These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 10816580)

  • 1. Characterization of glucosinolate uptake by leaf protoplasts of Brassica napus.
    Chen S; Halkier BA
    J Biol Chem; 2000 Jul; 275(30):22955-60. PubMed ID: 10816580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How plants dispose of chlorophyll catabolites. Directly energized uptake of tetrapyrrolic breakdown products into isolated vacuoles.
    Hinder B; Schellenberg M; Rodoni S; Ginsburg S; Vogt E; Martinoia E; Matile P; Hörtensteiner S
    J Biol Chem; 1996 Nov; 271(44):27233-6. PubMed ID: 8910294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-distance phloem transport of glucosinolates in Arabidopsis.
    Chen S; Petersen BL; Olsen CE; Schulz A; Halkier BA
    Plant Physiol; 2001 Sep; 127(1):194-201. PubMed ID: 11553747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Composition and content of glucosinolates in developing Arabidopsis thaliana.
    Petersen BL; Chen S; Hansen CH; Olsen CE; Halkier BA
    Planta; 2002 Feb; 214(4):562-71. PubMed ID: 11925040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing isothiocyanate formation during enzymatic glucosinolate breakdown by adjusting pH value, temperature and dilution in Brassica vegetables and Arabidopsis thaliana.
    Hanschen FS; Klopsch R; Oliviero T; Schreiner M; Verkerk R; Dekker M
    Sci Rep; 2017 Jan; 7():40807. PubMed ID: 28094342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A cell suspension based uptake method to study high affinity glucosinolate transporters.
    Nambiar DM; Kumari J; Arya GC; Singh AK; Bisht NC
    Plant Methods; 2020; 16():75. PubMed ID: 32489397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of transgenic Arabidopsis thaliana with metabolically engineered high levels of p-hydroxybenzylglucosinolate.
    Petersen BL; Andréasson E; Bak S; Agerbirk N; Halkier BA
    Planta; 2001 Mar; 212(4):612-8. PubMed ID: 11525519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Will chemical defenses become more effective against specialist herbivores under elevated CO2?
    Landosky JM; Karowe DN
    Glob Chang Biol; 2014 Oct; 20(10):3159-76. PubMed ID: 24832554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deamination role of inducible glutamate dehydrogenase isoenzyme 7 in Brassica napus leaf protoplasts.
    Watanabe M; Yumi O; Itoh Y; Yasuda K; Kamachi K; Ratcliffe RG
    Phytochemistry; 2011 May; 72(7):587-93. PubMed ID: 21353684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genotypic variation of the glucosinolate profile in pak choi (Brassica rapa ssp. chinensis).
    Wiesner M; Zrenner R; Krumbein A; Glatt H; Schreiner M
    J Agric Food Chem; 2013 Feb; 61(8):1943-53. PubMed ID: 23350944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selenium influences glucosinolate and isothiocyanates and increases sulfur uptake in Arabidopsis thaliana and rapid-cycling Brassica oleracea.
    Barickman TC; Kopsell DA; Sams CE
    J Agric Food Chem; 2013 Jan; 61(1):202-9. PubMed ID: 23240576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exogenous Methyl Jasmonate and Salicylic Acid Induce Subspecies-Specific Patterns of Glucosinolate Accumulation and Gene Expression in Brassica oleracea L.
    Yi GE; Robin AH; Yang K; Park JI; Hwang BH; Nou IS
    Molecules; 2016 Oct; 21(10):. PubMed ID: 27783045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uptake and distribution of sinigrin in microspore derived embryos of Brassica napus L.
    Iqbal MC; Möllers C
    J Plant Physiol; 2003 Aug; 160(8):961-6. PubMed ID: 12964872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leaching and degradation kinetics of glucosinolates during boiling of Brassica oleracea vegetables and the formation of their breakdown products.
    Hanschen FS; Kühn C; Nickel M; Rohn S; Dekker M
    Food Chem; 2018 Oct; 263():240-250. PubMed ID: 29784313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of sterol uptake in leaf tissues of sugar beet.
    Rossard S; Bonmort J; Guinet F; Ponchet M; Roblin G
    Planta; 2003 Dec; 218(2):288-99. PubMed ID: 12920595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of supplemental LED light quality and reduced growth temperature on swede (Brassica napus L. ssp. rapifera Metzg.) root vegetable development and contents of glucosinolates and sugars.
    Mølmann JA; Hansen E; Johansen TJ
    J Sci Food Agric; 2021 Apr; 101(6):2422-2427. PubMed ID: 33011991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seasonal variation in glucosinolate content in Brassica oleracea crops grown in northwestern Spain.
    Cartea ME; Velasco P; Obregón S; Padilla G; de Haro A
    Phytochemistry; 2008 Jan; 69(2):403-10. PubMed ID: 17889044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plant plasma membrane aquaporins in natural vesicles as potential stabilizers and carriers of glucosinolates.
    Martínez-Ballesta MDC; Pérez-Sánchez H; Moreno DA; Carvajal M
    Colloids Surf B Biointerfaces; 2016 Jul; 143():318-326. PubMed ID: 27022872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ontogenetic changes of 2-propenyl and 3-indolylmethyl glucosinolates in Brassica carinata leaves as affected by water supply.
    Schreiner M; Beyene B; Krumbein A; Stützel H
    J Agric Food Chem; 2009 Aug; 57(16):7259-63. PubMed ID: 20349919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytochemical fingerprinting of vegetable Brassica oleracea and Brassica napus by simultaneous identification of glucosinolates and phenolics.
    Velasco P; Francisco M; Moreno DA; Ferreres F; García-Viguera C; Cartea ME
    Phytochem Anal; 2011; 22(2):144-52. PubMed ID: 21259374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.