These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 1081679)

  • 21. Influence of lithium upon the intracellular potential of frog skin epithelium.
    Nagel W
    J Membr Biol; 1977 Dec; 37(3-4):347-59. PubMed ID: 304486
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The penetration of sodium into the epithelium of the frog skin.
    Rotunno CA; Vilallonga FA; Fernández M; Cereijido M
    J Gen Physiol; 1970 Jun; 55(6):716-35. PubMed ID: 5424375
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Na+ and K+ transport at basolateral membranes of epithelial cells. II. K+ efflux and stoichiometry of the Na,K-ATPase.
    Cox TC; Helman SI
    J Gen Physiol; 1986 Mar; 87(3):485-502. PubMed ID: 2420920
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influx and efflux of sodium at the outer surface of frog skin.
    Rick R; Dörge A; Nagel W
    J Membr Biol; 1975; 22(2):183-96. PubMed ID: 1079878
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of ouabain on electrical conductance of frog skins. Evidence against recycling of sodium.
    Corcia A; Lahav J; Caplan SR
    Biochim Biophys Acta; 1980 Feb; 596(2):264-71. PubMed ID: 6965587
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Activation by sanguinarine of active sodium efflux from frog skeletal muscle in the presence of ouabain.
    Moore RD; Rabovsky JL
    J Physiol; 1979 Oct; 295():1-20. PubMed ID: 230333
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sodium uptake by frog skin and its modification by inhibitors of transepithelial sodium transport.
    Erlij D; Smith MW
    J Physiol; 1973 Jan; 228(1):221-39. PubMed ID: 4539864
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The electrical potential profile of gallbladder epithelium.
    van Os CH; Slegers JF
    J Membr Biol; 1975 Dec; 24(3-4):341-63. PubMed ID: 1214280
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Na+ and K+ transport at basolateral membranes of epithelial cells. III. Voltage independence of basolateral membrane Na+ efflux.
    Cox TC; Helman SI
    J Gen Physiol; 1986 Mar; 87(3):503-9. PubMed ID: 2420921
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sodium transfer from endolymph through a luminal amiloride-sensitive channel.
    Ferrary E; Bernard C; Oudar O; Sterkers O; Amiel C
    Am J Physiol; 1989 Aug; 257(2 Pt 2):F182-9. PubMed ID: 2548398
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cross-talk between ATP-regulated K+ channels and Na+ transport via cellular metabolism in frog skin principal cells.
    Urbach V; Van Kerkhove E; Maguire D; Harvey BJ
    J Physiol; 1996 Feb; 491 ( Pt 1)(Pt 1):99-109. PubMed ID: 9011625
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of basolateral ouabain, amphotericin B, cyanide and potassium on amiloride noise during voltage clamp of Rana pipiens skin support sodium-amiloride competition.
    Hoshiko T; Grossman RA; Machlup S
    Biochim Biophys Acta; 1988 Jul; 942(1):186-98. PubMed ID: 2454664
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of furosemide on sodium content and transport pool in frog skin (Rana esculenta): comparison with vasopressin and ouabain.
    Axmann G; Fülgraff G
    Naunyn Schmiedebergs Arch Pharmacol; 1975; 290(2-3):275-84. PubMed ID: 1081203
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sodium-dependent copper uptake across epithelia: a review of rationale with experimental evidence from gill and intestine.
    Handy RD; Eddy FB; Baines H
    Biochim Biophys Acta; 2002 Nov; 1566(1-2):104-15. PubMed ID: 12421542
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of intracellular signals on Na+/K(+)-ATPase pump activity in the frog skin epithelium.
    Ehrenfeld J; Lacoste I; Harvey BJ
    Biochim Biophys Acta; 1992 Apr; 1106(1):197-208. PubMed ID: 1374642
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oxygen consumption by frog skin and its isolated epithelial layers as a function of their sodium-transporting activity.
    Noé G; Michotte A; Crabbé J
    Biochim Biophys Acta; 1977 Aug; 461(2):231-8. PubMed ID: 302122
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of standard diuretics and RPH 2823 on transepithelial Na+ transport in isolated frog skin.
    Kipnowski J; Passon J; Detjen C; Düsing R; Miederer S; Kramer HJ
    Klin Wochenschr; 1986 Aug; 64(16):750-9. PubMed ID: 2429018
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of isoproterenol on Na+ and K+ transport in frog skin epithelium.
    Cox TC; Grieme M; Woods R
    Biochim Biophys Acta; 1990 Feb; 1022(1):41-8. PubMed ID: 2302401
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrochemical potentials in frog skin: inferences for electrical and mechanistic models.
    Helman SI
    Fed Proc; 1979 Dec; 38(13):2743-50. PubMed ID: 510562
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The coupled movements of sodium and chloride across the basolateral membrane of frog skin epithelium.
    Fernandes PL; Ferreira HG; Ferreira KT
    J Physiol; 1989 Sep; 416():403-20. PubMed ID: 2607456
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.