These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 10817156)

  • 1. Limb and skeletal muscle blood flow measurements at rest and during exercise in human subjects.
    Rådegran G
    Proc Nutr Soc; 1999 Nov; 58(4):887-98. PubMed ID: 10817156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring muscle blood flow: a key link between systemic and regional metabolism.
    Casey DP; Curry TB; Joyner MJ
    Curr Opin Clin Nutr Metab Care; 2008 Sep; 11(5):580-6. PubMed ID: 18685453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methods for the determination of skeletal muscle blood flow: development, strengths and limitations.
    Gliemann L; Mortensen SP; Hellsten Y
    Eur J Appl Physiol; 2018 Jun; 118(6):1081-1094. PubMed ID: 29756164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasound Doppler estimates of femoral artery blood flow during dynamic knee extensor exercise in humans.
    Râdegran G
    J Appl Physiol (1985); 1997 Oct; 83(4):1383-8. PubMed ID: 9338449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of peripheral skeletal muscle microperfusion in a porcine model of peripheral arterial stenosis by steady-state contrast-enhanced ultrasound and Doppler flow measurement.
    Naehle CP; Steinberg VA; Schild H; Mommertz G
    J Vasc Surg; 2015 May; 61(5):1312-20. PubMed ID: 24418637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noninvasive assessment of sympathetic vasoconstriction in human and rodent skeletal muscle using near-infrared spectroscopy and Doppler ultrasound.
    Fadel PJ; Keller DM; Watanabe H; Raven PB; Thomas GD
    J Appl Physiol (1985); 2004 Apr; 96(4):1323-30. PubMed ID: 14657045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microdialysis ethanol removal reflects probe recovery rather than local blood flow in skeletal muscle.
    Râdegran G; Pilegaard H; Nielsen JJ; Bangsbo J
    J Appl Physiol (1985); 1998 Aug; 85(2):751-7. PubMed ID: 9688756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Skeletal muscle blood flow in humans and its regulation during exercise.
    Saltin B; Rådegran G; Koskolou MD; Roach RC
    Acta Physiol Scand; 1998 Mar; 162(3):421-36. PubMed ID: 9578388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of nitric oxide and prostaglandins, but not endothelial-derived hyperpolarizing factors, reduces blood flow and aerobic energy turnover in the exercising human leg.
    Mortensen SP; González-Alonso J; Damsgaard R; Saltin B; Hellsten Y
    J Physiol; 2007 Jun; 581(Pt 2):853-61. PubMed ID: 17347273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The application of blood flow measurements to the study of aging muscle.
    McCully KK; Posner JD
    J Gerontol A Biol Sci Med Sci; 1995 Nov; 50 Spec No():130-6. PubMed ID: 7493206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Total forearm blood flow as an indicator of skeletal muscle blood flow: effect of subcutaneous adipose tissue blood flow.
    Blaak EE; van Baak MA; Kemerink GJ; Pakbiers MT; Heidendal GA; Saris WH
    Clin Sci (Lond); 1994 Nov; 87(5):559-66. PubMed ID: 7874845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exercise versus vasodilator stress limb perfusion imaging for the assessment of peripheral artery disease.
    Davidson BP; Belcik JT; Landry G; Linden J; Lindner JR
    Echocardiography; 2017 Aug; 34(8):1187-1194. PubMed ID: 28664576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of continuous skeletal muscle blood flow during exercise in humans.
    Bønnelykke Sørensen V; Wroblewski H; Galatius S; Haunsø S; Kastrup J
    Microvasc Res; 2000 Mar; 59(2):301-9. PubMed ID: 10684736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Near-infrared spectroscopy and indocyanine green derived blood flow index for noninvasive measurement of muscle perfusion during exercise.
    Habazettl H; Athanasopoulos D; Kuebler WM; Wagner H; Roussos C; Wagner PD; Ungruhe J; Zakynthinos S; Vogiatzis I
    J Appl Physiol (1985); 2010 Apr; 108(4):962-7. PubMed ID: 20110542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of peripheral vascular stenosis by assessing skeletal muscle flow reserve.
    Bragadeesh T; Sari I; Pascotto M; Micari A; Kaul S; Lindner JR
    J Am Coll Cardiol; 2005 Mar; 45(5):780-5. PubMed ID: 15734625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microdialysis of skeletal muscle at rest.
    Henriksson J
    Proc Nutr Soc; 1999 Nov; 58(4):919-23. PubMed ID: 10817159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of nitric oxide in skeletal muscle blood flow at rest and during dynamic exercise in humans.
    Hickner RC; Fisher JS; Ehsani AA; Kohrt WM
    Am J Physiol; 1997 Jul; 273(1 Pt 2):H405-10. PubMed ID: 9249515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [MR-Imaging of lower leg muscle perfusion].
    Leppek R; Hoos O; Sattler A; Kohle S; Azzam S; Al Haffar I; Keil B; Ricken P; Klose KJ; Alfke H
    Herz; 2004 Feb; 29(1):32-46. PubMed ID: 14968340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Skeletal muscle substrate metabolism during exercise: methodological considerations.
    van Hall G; González-Alonso J; Sacchetti M; Saltin B
    Proc Nutr Soc; 1999 Nov; 58(4):899-912. PubMed ID: 10817157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reliability of muscle blood flow and oxygen consumption response from exercise using near-infrared spectroscopy.
    Lucero AA; Addae G; Lawrence W; Neway B; Credeur DP; Faulkner J; Rowlands D; Stoner L
    Exp Physiol; 2018 Jan; 103(1):90-100. PubMed ID: 29034529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.