These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 10817271)

  • 1. Photopolymers in orthopedics: characterization of novel crosslinked polyanhydrides.
    Young JS; Gonzales KD; Anseth KS
    Biomaterials; 2000 Jun; 21(11):1181-8. PubMed ID: 10817271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photopolymerizable degradable polyanhydrides with osteocompatibility.
    Anseth KS; Shastri VR; Langer R
    Nat Biotechnol; 1999 Feb; 17(2):156-9. PubMed ID: 10052351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crosslinked polyanhydrides for use in orthopedic applications: degradation behavior and mechanics.
    Muggli DS; Burkoth AK; Anseth KS
    J Biomed Mater Res; 1999 Aug; 46(2):271-8. PubMed ID: 10380006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface and bulk modifications to photocrosslinked polyanhydrides to control degradation behavior.
    Burkoth AK; Burdick J; Anseth KS
    J Biomed Mater Res; 2000 Sep; 51(3):352-9. PubMed ID: 10880076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Histocompatibility of photocrosslinked polyanhydrides: a novel in situ forming orthopaedic biomaterial.
    Poshusta AK; Burdick JA; Mortisen DJ; Padera RF; Ruehlman D; Yaszemski MJ; Anseth KS
    J Biomed Mater Res A; 2003 Jan; 64(1):62-9. PubMed ID: 12483697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A review of photocrosslinked polyanhydrides: in situ forming degradable networks.
    Burkoth AK; Anseth KS
    Biomaterials; 2000 Dec; 21(23):2395-404. PubMed ID: 11055287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization and in vitro degradation of poly(octadecanoic anhydride).
    Dong AJ; Zhang JW; Jiang K; Deng LD
    J Mater Sci Mater Med; 2008 Jan; 19(1):39-46. PubMed ID: 17577635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stretchable degradable and electroactive shape memory copolymers with tunable recovery temperature enhance myogenic differentiation.
    Deng Z; Guo Y; Zhao X; Li L; Dong R; Guo B; Ma PX
    Acta Biomater; 2016 Dec; 46():234-244. PubMed ID: 27640917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly(ester-anhydrides) Derived from Esters of Hydroxy Acid and Cyclic Anhydrides.
    Arun Y; Ghosh R; Domb AJ
    Biomacromolecules; 2022 Aug; 23(8):3417-3428. PubMed ID: 35881559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro bone biocompatibility of poly (anhydride-co-imides) containing pyromellitylimidoalanine.
    Attawia MA; Uhrich KE; Botchwey E; Langer R; Laurencin CT
    J Orthop Res; 1996 May; 14(3):445-54. PubMed ID: 8676258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyanhydrides. V. Branched polyanhydrides.
    Maniar M; Xie XD; Domb AJ
    Biomaterials; 1990 Nov; 11(9):690-4. PubMed ID: 2090304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High biobased content epoxy-anhydride thermosets from epoxidized sucrose esters of Fatty acids.
    Pan X; Sengupta P; Webster DC
    Biomacromolecules; 2011 Jun; 12(6):2416-28. PubMed ID: 21561167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High molecular weight poly(butylene succinate-co-butylene furandicarboxylate) copolyesters: from catalyzed polycondensation reaction to thermomechanical properties.
    Wu L; Mincheva R; Xu Y; Raquez JM; Dubois P
    Biomacromolecules; 2012 Sep; 13(9):2973-81. PubMed ID: 22830993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gamma-irradiation stability of saturated and unsaturated aliphatic polyanhydrides--ricinoleic acid based polymers.
    Teomim D; Mäder K; Bentolila A; Magora A; Domb AJ
    Biomacromolecules; 2001; 2(3):1015-22. PubMed ID: 11710004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioerodible polyanhydrides as drug-carrier matrices. I: Characterization, degradation, and release characteristics.
    Leong KW; Brott BC; Langer R
    J Biomed Mater Res; 1985 Oct; 19(8):941-55. PubMed ID: 3880353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physico-mechanical properties of degradable polymers used in medical applications: a comparative study.
    Engelberg I; Kohn J
    Biomaterials; 1991 Apr; 12(3):292-304. PubMed ID: 1649646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toxicity, biodegradation and elimination of polyanhydrides.
    Katti DS; Lakshmi S; Langer R; Laurencin CT
    Adv Drug Deliv Rev; 2002 Oct; 54(7):933-61. PubMed ID: 12384316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo and in vitro elimination of aliphatic polyanhydrides.
    Domb AJ; Nudelman R
    Biomaterials; 1995 Mar; 16(4):319-23. PubMed ID: 7772672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioerodible polyanhydrides as drug-carrier matrices. II. Biocompatibility and chemical reactivity.
    Leong KW; D'Amore PD; Marletta M; Langer R
    J Biomed Mater Res; 1986 Jan; 20(1):51-64. PubMed ID: 3949823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epoxy monomers derived from tung oil fatty acids and its regulable thermosets cured in two synergistic ways.
    Huang K; Liu Z; Zhang J; Li S; Li M; Xia J; Zhou Y
    Biomacromolecules; 2014 Mar; 15(3):837-43. PubMed ID: 24484324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.