These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 10818164)

  • 1. Cellular mechanisms of long-lasting adaptation in visual cortical neurons in vitro.
    Sanchez-Vives MV; Nowak LG; McCormick DA
    J Neurosci; 2000 Jun; 20(11):4286-99. PubMed ID: 10818164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane mechanisms underlying contrast adaptation in cat area 17 in vivo.
    Sanchez-Vives MV; Nowak LG; McCormick DA
    J Neurosci; 2000 Jun; 20(11):4267-85. PubMed ID: 10818163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptation and temporal decorrelation by single neurons in the primary visual cortex.
    Wang XJ; Liu Y; Sanchez-Vives MV; McCormick DA
    J Neurophysiol; 2003 Jun; 89(6):3279-93. PubMed ID: 12649312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship between repetitive firing and afterhyperpolarizations in human neocortical neurons.
    Lorenzon NM; Foehring RC
    J Neurophysiol; 1992 Feb; 67(2):350-63. PubMed ID: 1373765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional and ionic properties of a slow afterhyperpolarization in ferret perigeniculate neurons in vitro.
    Kim U; McCormick DA
    J Neurophysiol; 1998 Sep; 80(3):1222-35. PubMed ID: 9744934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ionic mechanisms underlying repetitive high-frequency burst firing in supragranular cortical neurons.
    Brumberg JC; Nowak LG; McCormick DA
    J Neurosci; 2000 Jul; 20(13):4829-43. PubMed ID: 10864940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Afterhyperpolarization current in myenteric neurons of the guinea pig duodenum.
    Vogalis F; Furness JB; Kunze WA
    J Neurophysiol; 2001 May; 85(5):1941-51. PubMed ID: 11353011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptation in the visual cortex: influence of membrane trajectory and neuronal firing pattern on slow afterpotentials.
    Descalzo VF; Gallego R; Sanchez-Vives MV
    PLoS One; 2014; 9(11):e111578. PubMed ID: 25380063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of oscillatory activity in guinea-pig nucleus reticularis thalami in vitro: a mammalian pacemaker.
    Bal T; McCormick DA
    J Physiol; 1993 Aug; 468():669-91. PubMed ID: 8254530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ionic mechanisms of intrinsic oscillations in neurons of the basolateral amygdaloid complex.
    Pape HC; Driesang RB
    J Neurophysiol; 1998 Jan; 79(1):217-26. PubMed ID: 9425193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of low and high frequency inputs on spike timing in visual cortical neurons.
    Nowak LG; Sanchez-Vives MV; McCormick DA
    Cereb Cortex; 1997 Sep; 7(6):487-501. PubMed ID: 9276174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GABAB receptor activation causes a depression of low- and high-voltage-activated Ca2+ currents, postinhibitory rebound, and postspike afterhyperpolarization in lamprey neurons.
    Matsushima T; Tegnér J; Hill RH; Grillner S
    J Neurophysiol; 1993 Dec; 70(6):2606-19. PubMed ID: 8120601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrophysiological properties of rat pontine nuclei neurons In vitro. I. Membrane potentials and firing patterns.
    Schwarz C; Möck M; Thier P
    J Neurophysiol; 1997 Dec; 78(6):3323-37. PubMed ID: 9405547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intrinsic membrane potential oscillations in hippocampal neurons in vitro.
    Leung LW; Yim CY
    Brain Res; 1991 Jul; 553(2):261-74. PubMed ID: 1718544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium-dependent potassium currents in neurons from cat sensorimotor cortex.
    Schwindt PC; Spain WJ; Crill WE
    J Neurophysiol; 1992 Jan; 67(1):216-26. PubMed ID: 1313080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electroresponsiveness of medial entorhinal cortex layer III neurons in vitro.
    Dickson CT; Mena AR; Alonso A
    Neuroscience; 1997 Dec; 81(4):937-50. PubMed ID: 9330357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of pH changes on calcium-mediated potentials in rat hippocampal neurons in vitro.
    Church J
    Neuroscience; 1999 Mar; 89(3):731-42. PubMed ID: 10199608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Apamin-sensitive calcium-activated potassium currents (SK) are activated by persistent calcium currents in rat motoneurons.
    Li X; Bennett DJ
    J Neurophysiol; 2007 May; 97(5):3314-30. PubMed ID: 17360829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological role of calcium-activated potassium currents in the rat lateral amygdala.
    Faber ES; Sah P
    J Neurosci; 2002 Mar; 22(5):1618-28. PubMed ID: 11880492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive coincidence detection and dynamic gain control in visual cortical neurons in vivo.
    Azouz R; Gray CM
    Neuron; 2003 Feb; 37(3):513-23. PubMed ID: 12575957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.