BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 10818988)

  • 1. Effects of monopolar radiofrequency energy on ovine joint capsular mechanical properties.
    Lopez MJ; Hayashi K; Vanderby R; Thabit G; Fanton GS; Markel MD
    Clin Orthop Relat Res; 2000 May; (374):286-97. PubMed ID: 10818988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excessive radiofrequency application: effects on capsular tissue in an animal model.
    Wolf BR; Heiner AD; Albright JP; Nepola JV
    J Shoulder Elbow Surg; 2005; 14(2):149-56. PubMed ID: 15789008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of monopolar radiofrequency treatment pattern on joint capsular healing. In vitro and in vivo studies using an ovine model.
    Lu Y; Hayashi K; Edwards RB; Fanton GS; Thabit G; Markel MD
    Am J Sports Med; 2000; 28(5):711-9. PubMed ID: 11032230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monopolar radiofrequency energy effects on joint capsular tissue: potential treatment for joint instability. An in vivo mechanical, morphological, and biochemical study using an ovine model.
    Hecht P; Hayashi K; Lu Y; Fanton GS; Thabit G; Vanderby R; Markel MD
    Am J Sports Med; 1999; 27(6):761-71. PubMed ID: 10569363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The healing effects on the biomechanical properties of joint capsular tissue treated with Ho:YAG laser: An in vivo rabbit study.
    Schulz MM; Lee TQ; Sandusky MD; Tibone JE; McMahon PJ
    Arthroscopy; 2001 Apr; 17(4):342-7. PubMed ID: 11288003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal capsular shrinkage: Basic science and clinical applications.
    Medvecky MJ; Ong BC; Rokito AS; Sherman OH
    Arthroscopy; 2001 Jul; 17(6):624-35. PubMed ID: 11447551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mechanism of joint capsule thermal modification in an in-vitro sheep model.
    Hayashi K; Peters DM; Thabit G; Hecht P; Vanderby R; Fanton GS; Markel MD
    Clin Orthop Relat Res; 2000 Jan; (370):236-49. PubMed ID: 10660719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of radiofrequency energy on the ultrastructure of joint capsular collagen.
    Lopez MJ; Hayashi K; Fanton GS; Thabit G; Markel MD
    Arthroscopy; 1998; 14(5):495-501. PubMed ID: 9681542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of nonablative laser energy on joint capsular properties. An in vitro mechanical study using a rabbit model.
    Hayashi K; Markel MD; Thabit G; Bogdanske JJ; Thielke RJ
    Am J Sports Med; 1995; 23(4):482-7. PubMed ID: 7573661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative effects of laser and radiofrequency energy on joint capsule.
    Osmond C; Hecht P; Hayashi K; Hansen S; Fanton GS; Thabit G; Markel MD
    Clin Orthop Relat Res; 2000 Jun; (375):286-94. PubMed ID: 10853180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tensile properties of the knee-joint capsule at an elevated intraarticular pressure.
    Sperber A; Wredmark T
    Acta Orthop Scand; 1998 Oct; 69(5):484-8. PubMed ID: 9855229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immediate effect of thermal capsulorrhaphy on glenohumeral joint mobility.
    Chang JH; Hsu AT; Lee SJ; Chang GL
    Clin Biomech (Bristol, Avon); 2004 Jul; 19(6):572-8. PubMed ID: 15234480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Creep behavior of a rabbit model of ligament laxity after electrothermal shrinkage in vivo.
    Wallace AL; Hollinshead RM; Frank CB
    Am J Sports Med; 2002; 30(1):98-102. PubMed ID: 11799003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The thermal effect of monopolar radiofrequency energy on the properties of joint capsule. An in vivo histologic study using a sheep model.
    Hecht P; Hayashi K; Cooley AJ; Lu Y; Fanton GS; Thabit G; Markel MD
    Am J Sports Med; 1998; 26(6):808-14. PubMed ID: 9850783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative effects of monopolar radiofrequency energy and conservative management of mechanical properties of elongated lateral collateral ligament in rabbits: an experimental study.
    Ilhami K; Eray BM; Gokhan M; Ulukan I; Levent A
    Clin Biomech (Bristol, Avon); 2004 Feb; 19(2):184-9. PubMed ID: 14967582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical Effects of Capsular Shift in the Treatment of Hip Microinstability: Creation and Testing of a Novel Hip Instability Model.
    Jackson TJ; Peterson AB; Akeda M; Estess A; McGarry MH; Adamson GJ; Lee TQ
    Am J Sports Med; 2016 Mar; 44(3):689-95. PubMed ID: 26717973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The effect of debridement performed before capsular plication on biomechanical properties of the knee joint capsule: an experimental study in rabbits].
    Ozbaydar MU; Esenyel CZ; Kiliçoğlu O; Atalar AC; Bozdağ E; Sünbüloğlu E; Ozağari A; Demirhan M
    Acta Orthop Traumatol Turc; 2008; 42(3):201-7. PubMed ID: 18716436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computer-assisted measurements of coronal knee joint laxity in vitro are related to low-stress behavior rather than structural properties of the collateral ligaments.
    Wilson WT; Deakin AH; Wearing SC; Payne AP; Clarke JV; Picard F
    Comput Aided Surg; 2013; 18(5-6):181-6. PubMed ID: 23697384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature along the axillary nerve during radiofrequency-induced thermal capsular shrinkage.
    McCarty EC; Warren RF; Deng XH; Craig EV; Potter H
    Am J Sports Med; 2004 Jun; 32(4):909-14. PubMed ID: 15150036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The thermal properties of bovine joint capsule. The basic science of laser- and radiofrequency-induced capsular shrinkage.
    Naseef GS; Foster TE; Trauner K; Solhpour S; Anderson RR; Zarins B
    Am J Sports Med; 1997; 25(5):670-4. PubMed ID: 9302474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.