BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 10819991)

  • 1. Tyrosinase and glycoprotein folding: roles of chaperones that recognize glycans.
    Petrescu SM; Branza-Nichita N; Negroiu G; Petrescu AJ; Dwek RA
    Biochemistry; 2000 May; 39(18):5229-37. PubMed ID: 10819991
    [No Abstract]   [Full Text] [Related]  

  • 2. Folding and maturation of tyrosinase-related protein-1 are regulated by the post-translational formation of disulfide bonds and by N-glycan processing.
    Negroiu G; Dwek RA; Petrescu SM
    J Biol Chem; 2000 Oct; 275(41):32200-7. PubMed ID: 10915799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of N-glycan processing in B16 melanoma cells results in inactivation of tyrosinase but does not prevent its transport to the melanosome.
    Petrescu SM; Petrescu AJ; Titu HN; Dwek RA; Platt FM
    J Biol Chem; 1997 Jun; 272(25):15796-803. PubMed ID: 9188477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The solution NMR structure of glucosylated N-glycans involved in the early stages of glycoprotein biosynthesis and folding.
    Petrescu AJ; Butters TD; Reinkensmeier G; Petrescu S; Platt FM; Dwek RA; Wormald MR
    EMBO J; 1997 Jul; 16(14):4302-10. PubMed ID: 9250674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. N-glycan processing and glycoprotein folding.
    Trombetta ES; Parodi AJ
    Adv Protein Chem; 2001; 59():303-44. PubMed ID: 11868276
    [No Abstract]   [Full Text] [Related]  

  • 6. The contribution of N-glycans and their processing in the endoplasmic reticulum to glycoprotein biosynthesis.
    Trombetta ES
    Glycobiology; 2003 Sep; 13(9):77R-91R. PubMed ID: 12736198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein specific N-glycosylation of tyrosinase and tyrosinase-related protein-1 in B16 mouse melanoma cells.
    Negroiu G; Branza-Nichita N; Petrescu AJ; Dwek RA; Petrescu SM
    Biochem J; 1999 Dec; 344 Pt 3(Pt 3):659-65. PubMed ID: 10585852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The glycan code of the endoplasmic reticulum: asparagine-linked carbohydrates as protein maturation and quality-control tags.
    Hebert DN; Garman SC; Molinari M
    Trends Cell Biol; 2005 Jul; 15(7):364-70. PubMed ID: 15939591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tyrosinase maturation and oligomerization in the endoplasmic reticulum require a melanocyte-specific factor.
    Francis E; Wang N; Parag H; Halaban R; Hebert DN
    J Biol Chem; 2003 Jul; 278(28):25607-17. PubMed ID: 12724309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Roles of N-linked glycans in the endoplasmic reticulum.
    Helenius A; Aebi M
    Annu Rev Biochem; 2004; 73():1019-49. PubMed ID: 15189166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of the intracellular transport of tyrosinase and tyrosinase related protein (TRP)-1. The effect of endoplasmic reticulum (ER)-glucosidases inhibition.
    Negroiu G; Branza-Nichita N; Costin GE; Titu H; Petrescu AJ; Dwek RA; Petrescu SM
    Cell Mol Biol (Noisy-le-grand); 1999 Nov; 45(7):1001-10. PubMed ID: 10644004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein glucosylation and its role in protein folding.
    Parodi AJ
    Annu Rev Biochem; 2000; 69():69-93. PubMed ID: 10966453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural views of glycoprotein-fate determination in cells.
    Kato K; Kamiya Y
    Glycobiology; 2007 Oct; 17(10):1031-44. PubMed ID: 17449642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retention of glucose units added by the UDP-GLC:glycoprotein glucosyltransferase delays exit of glycoproteins from the endoplasmic reticulum.
    Labriola C; Cazzulo JJ; Parodi AJ
    J Cell Biol; 1995 Aug; 130(4):771-9. PubMed ID: 7642696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. C-terminus glycans with critical functional role in the maturation of secretory glycoproteins.
    Cioaca D; Ghenea S; Spiridon LN; Marin M; Petrescu AJ; Petrescu SM
    PLoS One; 2011; 6(5):e19979. PubMed ID: 21625599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of N-oligosaccharide endoplasmic reticulum processing reactions in glycoprotein folding and degradation.
    Parodi AJ
    Biochem J; 2000 May; 348 Pt 1(Pt 1):1-13. PubMed ID: 10794707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aberrant retention of tyrosinase in the endoplasmic reticulum mediates accelerated degradation of the enzyme and contributes to the dedifferentiated phenotype of amelanotic melanoma cells.
    Halaban R; Cheng E; Zhang Y; Moellmann G; Hanlon D; Michalak M; Setaluri V; Hebert DN
    Proc Natl Acad Sci U S A; 1997 Jun; 94(12):6210-5. PubMed ID: 9177196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pH-sensitive liposomes are efficient carriers for endoplasmic reticulum-targeted drugs in mouse melanoma cells.
    Costin GE; Trif M; Nichita N; Dwek RA; Petrescu SM
    Biochem Biophys Res Commun; 2002 May; 293(3):918-23. PubMed ID: 12051746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulated folding of tyrosinase in the endoplasmic reticulum demonstrates that misfolded full-length proteins are efficient substrates for class I processing and presentation.
    Ostankovitch M; Robila V; Engelhard VH
    J Immunol; 2005 Mar; 174(5):2544-51. PubMed ID: 15728460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The evolution of N-glycan-dependent endoplasmic reticulum quality control factors for glycoprotein folding and degradation.
    Banerjee S; Vishwanath P; Cui J; Kelleher DJ; Gilmore R; Robbins PW; Samuelson J
    Proc Natl Acad Sci U S A; 2007 Jul; 104(28):11676-81. PubMed ID: 17606910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.