These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 10820330)

  • 1. Biomass evolution in porous media and its effects on permeability under starvation conditions.
    Kim DS; Fogler HS
    Biotechnol Bioeng; 2000 Jul; 69(1):47-56. PubMed ID: 10820330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomass plug development and propagation in porous media.
    Stewart TL; Fogler HS
    Biotechnol Bioeng; 2001 Feb; 72(3):353-63. PubMed ID: 11135206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pore-scale investigation of biomass plug development and propagation in porous media.
    Stewart TL; Scott Fogler H
    Biotechnol Bioeng; 2002 Mar; 77(5):577-88. PubMed ID: 11788955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pore-network modeling of biofilm evolution in porous media.
    Ezeuko CC; Sen A; Grigoryan A; Gates ID
    Biotechnol Bioeng; 2011 Oct; 108(10):2413-23. PubMed ID: 21520022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of exopolymers on cell morphology and culturability of Leuconostoc mesenteroides during starvation.
    Kim DS; Fogler HS
    Appl Microbiol Biotechnol; 1999 Nov; 52(6):839-44. PubMed ID: 10616718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards optimum permeability reduction in porous media using biofilm growth simulations.
    Pintelon TR; Graf von der Schulenburg DA; Johns ML
    Biotechnol Bioeng; 2009 Jul; 103(4):767-79. PubMed ID: 19309753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biofilm development and the dynamics of preferential flow paths in porous media.
    Bottero S; Storck T; Heimovaara TJ; van Loosdrecht MC; Enzien MV; Picioreanu C
    Biofouling; 2013; 29(9):1069-86. PubMed ID: 24028574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel approach to investigate biofilm accumulation and bacterial transport in porous matrices.
    Dunsmore BC; Bass CJ; Lappin-Scott HM
    Environ Microbiol; 2004 Feb; 6(2):183-7. PubMed ID: 14756882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of biofilm permeability on bio-clogging of porous media.
    Pintelon TR; Picioreanu C; Loosdrecht MC; Johns ML
    Biotechnol Bioeng; 2012 Apr; 109(4):1031-42. PubMed ID: 22095039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-dimensional model of biofilm detachment caused by internal stress from liquid flow.
    Picioreanu C; van Loosdrecht MC; Heijnen JJ
    Biotechnol Bioeng; 2001 Jan; 72(2):205-18. PubMed ID: 11114658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational pore network modeling of the influence of biofilm permeability on bioclogging in porous media.
    Thullner M; Baveye P
    Biotechnol Bioeng; 2008 Apr; 99(6):1337-51. PubMed ID: 18023059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydraulic shear stress calculation in a sequencing Batch biofilm reactor with granular biomass.
    Di Iaconi C; Ramadori R; Lopez A; Passino R
    Environ Sci Technol; 2005 Feb; 39(3):889-94. PubMed ID: 15757355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Permeability of a growing biofilm in a porous media fluid flow analyzed by magnetic resonance displacement-relaxation correlations.
    Vogt SJ; Sanderlin AB; Seymour JD; Codd SL
    Biotechnol Bioeng; 2013 May; 110(5):1366-75. PubMed ID: 23239390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of pore-scale heterogeneity and transverse mixing on bacterial growth in porous media.
    Zhang C; Kang Q; Wang X; Zilles JL; Müller RH; Werth CJ
    Environ Sci Technol; 2010 Apr; 44(8):3085-92. PubMed ID: 20192171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Competition between growth and shear stress drives intermittency in preferential flow paths in porous medium biofilms.
    Kurz DL; Secchi E; Carrillo FJ; Bourg IC; Stocker R; Jimenez-Martinez J
    Proc Natl Acad Sci U S A; 2022 Jul; 119(30):e2122202119. PubMed ID: 35858419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new approach to model the spatiotemporal development of biofilm phase in porous media.
    Bozorg A; Sen A; Gates ID
    Environ Microbiol; 2011 Nov; 13(11):3010-23. PubMed ID: 21951321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduction of porous media permeability from in situ Leuconostoc mesenteroides growth and dextran production.
    Lappan RE; Fogler HS
    Biotechnol Bioeng; 1996 Apr; 50(1):6-15. PubMed ID: 18626894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupled flow and biomass-nutrient growth at pore-scale with permeable biofilm, adaptive singularity and multiple species.
    Shin C; Alhammali A; Bigler L; Vohra N; Peszynska M
    Math Biosci Eng; 2021 Mar; 18(3):2097-2149. PubMed ID: 33892538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid formation of bioaggregates and morphology transition to biofilm streamers induced by pore-throat flows.
    Lee SH; Secchi E; Kang PK
    Proc Natl Acad Sci U S A; 2023 Apr; 120(14):e2204466120. PubMed ID: 36989304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flowing biofilms as a transport mechanism for biomass through porous media under laminar and turbulent conditions in a laboratory reactor system.
    Stoodley P; Dodds I; De Beer D; Scott HL; Boyle JD
    Biofouling; 2005; 21(3-4):161-8. PubMed ID: 16371336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.