BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 10820335)

  • 1. Production of enantiopure styrene oxide by recombinant Escherichia coli synthesizing a two-component styrene monooxygenase.
    Panke S; Wubbolts MG; Schmid A; Witholt B
    Biotechnol Bioeng; 2000 Jul; 69(1):91-100. PubMed ID: 10820335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pilot-scale production of (S)-styrene oxide from styrene by recombinant Escherichia coli synthesizing styrene monooxygenase.
    Panke S; Held M; Wubbolts MG; Witholt B; Schmid A
    Biotechnol Bioeng; 2002 Oct; 80(1):33-41. PubMed ID: 12209784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards a biocatalyst for (S)-styrene oxide production: characterization of the styrene degradation pathway of Pseudomonas sp. strain VLB120.
    Panke S; Witholt B; Schmid A; Wubbolts MG
    Appl Environ Microbiol; 1998 Jun; 64(6):2032-43. PubMed ID: 9603811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production host selection for asymmetric styrene epoxidation: Escherichia coli vs. solvent-tolerant Pseudomonas.
    Kuhn D; Bühler B; Schmid A
    J Ind Microbiol Biotechnol; 2012 Aug; 39(8):1125-33. PubMed ID: 22526330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon metabolism and product inhibition determine the epoxidation efficiency of solvent-tolerant Pseudomonas sp. strain VLB120DeltaC.
    Park JB; Bühler B; Panke S; Witholt B; Schmid A
    Biotechnol Bioeng; 2007 Dec; 98(6):1219-29. PubMed ID: 17514751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NADH availability limits asymmetric biocatalytic epoxidation in a growing recombinant Escherichia coli strain.
    Bühler B; Park JB; Blank LM; Schmid A
    Appl Environ Microbiol; 2008 Mar; 74(5):1436-46. PubMed ID: 18192422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The efficiency of recombinant Escherichia coli as biocatalyst for stereospecific epoxidation.
    Park JB; Bühler B; Habicher T; Hauer B; Panke S; Witholt B; Schmid A
    Biotechnol Bioeng; 2006 Oct; 95(3):501-12. PubMed ID: 16767777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering of a stable whole-cell biocatalyst capable of (S)-styrene oxide formation for continuous two-liquid-phase applications.
    Panke S; de Lorenzo V; Kaiser A; Witholt B; Wubbolts MG
    Appl Environ Microbiol; 1999 Dec; 65(12):5619-23. PubMed ID: 10584030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of the two-liquid phase concept to exploit kinetically controlled multistep biocatalysis.
    Bühler B; Bollhalder I; Hauer B; Witholt B; Schmid A
    Biotechnol Bioeng; 2003 Mar; 81(6):683-94. PubMed ID: 12529882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Constitutively solvent-tolerant Pseudomonas taiwanensis VLB120∆ C∆ ttgV supports particularly high-styrene epoxidation activities when grown under glucose excess conditions.
    Volmer J; Lindmeyer M; Seipp J; Schmid A; Bühler B
    Biotechnol Bioeng; 2019 May; 116(5):1089-1101. PubMed ID: 30636283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of Enantiopure Chiral Epoxides with
    Gyuranová D; Štadániová R; Hegyi Z; Fischer R; Rebroš M
    Molecules; 2021 Mar; 26(6):. PubMed ID: 33802034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical characterization of StyAB from Pseudomonas sp. strain VLB120 as a two-component flavin-diffusible monooxygenase.
    Otto K; Hofstetter K; Röthlisberger M; Witholt B; Schmid A
    J Bacteriol; 2004 Aug; 186(16):5292-302. PubMed ID: 15292130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression and characterization of styrene monooxygenases of Rhodococcus sp. ST-5 and ST-10 for synthesizing enantiopure (S)-epoxides.
    Toda H; Imae R; Komio T; Itoh N
    Appl Microbiol Biotechnol; 2012 Oct; 96(2):407-18. PubMed ID: 22258641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro evolution of styrene monooxygenase from Pseudomonas putida CA-3 for improved epoxide synthesis.
    Gursky LJ; Nikodinovic-Runic J; Feenstra KA; O'Connor KE
    Appl Microbiol Biotechnol; 2010 Jan; 85(4):995-1004. PubMed ID: 19568744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial production of the aromatic building-blocks (S)-styrene oxide and (R)-1,2-phenylethanediol from renewable resources.
    McKenna R; Pugh S; Thompson B; Nielsen DR
    Biotechnol J; 2013 Dec; 8(12):1465-75. PubMed ID: 23801570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of the two-component regulator StyS/StyR enhanced transcription of the styrene monooxygenase gene styAB and indigo biosynthesis in Escherichia coli.
    Yin S; Li Y; Hou J
    Enzyme Microb Technol; 2024 Mar; 174():110381. PubMed ID: 38134734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovery of a novel styrene monooxygenase originating from the metagenome.
    van Hellemond EW; Janssen DB; Fraaije MW
    Appl Environ Microbiol; 2007 Sep; 73(18):5832-9. PubMed ID: 17644649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An alkane-responsive expression system for the production of fine chemicals.
    Panke S; Meyer A; Huber CM; Witholt B; Wubbolts MG
    Appl Environ Microbiol; 1999 Jun; 65(6):2324-32. PubMed ID: 10347009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new biocatalyst for production of optically pure aryl epoxides by styrene monooxygenase from Pseudomonas fluorescens ST.
    Di Gennaro P; Colmegna A; Galli E; Sello G; Pelizzoni F; Bestetti G
    Appl Environ Microbiol; 1999 Jun; 65(6):2794-7. PubMed ID: 10347083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The application of constitutively solvent-tolerant P. taiwanensis VLB120ΔCΔttgV for stereospecific epoxidation of toxic styrene alleviates carrier solvent use.
    Volmer J; Schmid A; Bühler B
    Biotechnol J; 2017 Jul; 12(7):. PubMed ID: 28345250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.