BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 10821645)

  • 1. Macrocyclic chelators with paramagnetic cations are internalized into mammalian cells via a HIV-tat derived membrane translocation peptide.
    Bhorade R; Weissleder R; Nakakoshi T; Moore A; Tung CH
    Bioconjug Chem; 2000; 11(3):301-5. PubMed ID: 10821645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel Tat-peptide chelates for direct transduction of technetium-99m and rhenium into human cells for imaging and radiotherapy.
    Polyakov V; Sharma V; Dahlheimer JL; Pica CM; Luker GD; Piwnica-Worms D
    Bioconjug Chem; 2000; 11(6):762-71. PubMed ID: 11087323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus.
    Vivès E; Brodin P; Lebleu B
    J Biol Chem; 1997 Jun; 272(25):16010-7. PubMed ID: 9188504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The cationic cell-penetrating peptide CPP(TAT) derived from the HIV-1 protein TAT is rapidly transported into living fibroblasts: optical, biophysical, and metabolic evidence.
    Ziegler A; Nervi P; Dürrenberger M; Seelig J
    Biochemistry; 2005 Jan; 44(1):138-48. PubMed ID: 15628854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters.
    Wender PA; Mitchell DJ; Pattabiraman K; Pelkey ET; Steinman L; Rothbard JB
    Proc Natl Acad Sci U S A; 2000 Nov; 97(24):13003-8. PubMed ID: 11087855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates.
    Josephson L; Tung CH; Moore A; Weissleder R
    Bioconjug Chem; 1999; 10(2):186-91. PubMed ID: 10077466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel cell nucleus directed fluorescent tetraazacyclododecane-tetra-acetic acid compounds.
    Sturzu A; Klose U; Echner H; Regenbogen M; Kalbacher H; Gharabaghi A; Heckl S
    Med Chem; 2009 Jan; 5(1):93-102. PubMed ID: 19149655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Translocation of the cell-penetrating Tat peptide across artificial bilayers and into living cells.
    Curnow P; Mellor H; Stephens DJ; Lorch M; Booth PJ
    Biochem Soc Symp; 2005; (72):199-209. PubMed ID: 15649143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of nuclear internalization of Tat peptides by fluorescent dyes and receptor-avid peptides.
    Shen D; Liang K; Ye Y; Tetteh E; Achilefu S
    FEBS Lett; 2007 May; 581(9):1793-9. PubMed ID: 17416362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endocytosis and membrane potential are required for HeLa cell uptake of R.I.-CKTat9, a retro-inverso Tat cell penetrating peptide.
    Zhang X; Jin Y; Plummer MR; Pooyan S; Gunaseelan S; Sinko PJ
    Mol Pharm; 2009; 6(3):836-48. PubMed ID: 19278221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Translocation and nuclear accumulation of monomer and dimer of HIV-1 Tat basic domain in triticale mesophyll protoplasts.
    Chugh A; Eudes F
    Biochim Biophys Acta; 2007 Mar; 1768(3):419-26. PubMed ID: 17214959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tumor cell retention of antibody Fab fragments is enhanced by an attached HIV TAT protein-derived peptide.
    Anderson DC; Nichols E; Manger R; Woodle D; Barry M; Fritzberg AR
    Biochem Biophys Res Commun; 1993 Jul; 194(2):876-84. PubMed ID: 8343170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Different mechanisms for cellular internalization of the HIV-1 Tat-derived cell penetrating peptide and recombinant proteins fused to Tat.
    Silhol M; Tyagi M; Giacca M; Lebleu B; Vivès E
    Eur J Biochem; 2002 Jan; 269(2):494-501. PubMed ID: 11856307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NMR structure of a biologically active peptide containing the RNA-binding domain of human immunodeficiency virus type 1 Tat.
    Mujeeb A; Bishop K; Peterlin BM; Turck C; Parslow TG; James TL
    Proc Natl Acad Sci U S A; 1994 Aug; 91(17):8248-52. PubMed ID: 8058789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular cargo delivery using tat peptide and derivatives.
    Zhao M; Weissleder R
    Med Res Rev; 2004 Jan; 24(1):1-12. PubMed ID: 14595670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular Uptake and Photo-Cytotoxicity of a Gadolinium(III)-DOTA-Naphthalimide Complex "Clicked" to a Lipidated Tat Peptide.
    O'Malley WI; Rubbiani R; Aulsebrook ML; Grace MR; Spiccia L; Tuck KL; Gasser G; Graham B
    Molecules; 2016 Feb; 21(2):. PubMed ID: 26861271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Tracking Trojan peptides in cells].
    Sagan S; Burlina F; Delaroche D; Aussedat B; Aubry S; Bolbach G; Lavielle S; Chassaing G
    J Soc Biol; 2006; 200(3):213-9. PubMed ID: 17417135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tat peptide-mediated cellular delivery: back to basics.
    Brooks H; Lebleu B; Vivès E
    Adv Drug Deliv Rev; 2005 Feb; 57(4):559-77. PubMed ID: 15722164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural variety of membrane permeable peptides.
    Futaki S; Goto S; Suzuki T; Nakase I; Sugiura Y
    Curr Protein Pept Sci; 2003 Apr; 4(2):87-96. PubMed ID: 12678848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arginine-rich peptides: potential for intracellular delivery of macromolecules and the mystery of the translocation mechanisms.
    Futaki S
    Int J Pharm; 2002 Oct; 245(1-2):1-7. PubMed ID: 12270237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.