BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 10821744)

  • 1. Simple mechanisms organise orientation of escape swimming in embryos and hatchling tadpoles of Xenopus laevis.
    Roberts A; Hill NA; Hicks R
    J Exp Biol; 2000 Jun; 203(Pt 12):1869-85. PubMed ID: 10821744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Responses of young Xenopus laevis tadpoles to light dimming: possible roles for the pineal eye.
    Jamieson D; Roberts A
    J Exp Biol; 2000 Jun; 203(Pt 12):1857-67. PubMed ID: 10821743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simple decision to move in response to touch reveals basic sensory memory and mechanisms for variable response times.
    Koutsikou S; Merrison-Hort R; Buhl E; Ferrario A; Li WC; Borisyuk R; Soffe SR; Roberts A
    J Physiol; 2018 Dec; 596(24):6219-6233. PubMed ID: 30074236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypergravity susceptibility of ventral root activity during fictive swimming in tadpoles (Xenopus laevis).
    Böser S; Horn ER
    Arch Ital Biol; 2006 May; 144(2):99-113. PubMed ID: 16642789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Schooling in
    Lopez V; Khakhalin AS; Aizenman C
    Cold Spring Harb Protoc; 2021 May; 2021(5):. PubMed ID: 33941669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developmental changes in head movement kinematics during swimming in Xenopus laevis tadpoles.
    Hänzi S; Straka H
    J Exp Biol; 2017 Jan; 220(Pt 2):227-236. PubMed ID: 27811303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical coupling synchronises spinal motoneuron activity during swimming in hatchling Xenopus tadpoles.
    Zhang HY; Li WC; Heitler WJ; Sillar KT
    J Physiol; 2009 Sep; 587(Pt 18):4455-66. PubMed ID: 19635820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms and significance of reduced activity and responsiveness in resting frog tadpoles.
    Lambert TD; Howard J; Plant A; Soffe S; Roberts A
    J Exp Biol; 2004 Mar; 207(Pt 7):1113-25. PubMed ID: 14978054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optomotor behaviour in Xenopus laevis tadpoles as a measure of the effect of gravity on visual and vestibular neural integration.
    Pronych SP; Souza KA; Neff AW; Wassersug RJ
    J Exp Biol; 1996 Dec; 199(Pt 12):2689-701. PubMed ID: 9110955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal activation of escape swimming in post-hatching Xenopus laevis frog larvae.
    Sillar KT; Robertson RM
    J Exp Biol; 2009 Aug; 212(Pt 15):2356-64. PubMed ID: 19617428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal acclimation of locomotor performance in tadpoles and adults of the aquatic frog Xenopus laevis.
    Wilson RS; James RS; Johnston IA
    J Comp Physiol B; 2000 Mar; 170(2):117-24. PubMed ID: 10791571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of space flight on Xenopus laevis larval development.
    Snetkova E; Chelnaya N; Serova L; Saveliev S; Cherdanzova E; Pronych S; Wassersug R
    J Exp Zool; 1995 Sep; 273(1):21-32. PubMed ID: 7561721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensory initiation of a co-ordinated motor response: synaptic excitation underlying simple decision-making.
    Buhl E; Soffe SR; Roberts A
    J Physiol; 2015 Oct; 593(19):4423-37. PubMed ID: 26138033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The stopping response of Xenopus laevis embryos: behaviour, development and physiology.
    Boothby KM; Roberts A
    J Comp Physiol A; 1992 Feb; 170(2):171-80. PubMed ID: 1583603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An early midbrain sensorimotor pathway is involved in the timely initiation and direction of swimming in the hatchling
    Larbi MC; Messa G; Jalal H; Koutsikou S
    Front Neural Circuits; 2022; 16():1027831. PubMed ID: 36619662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The early development and physiology of
    Saccomanno V; Love H; Sylvester A; Li WC
    J Neurophysiol; 2021 Nov; 126(5):1814-1830. PubMed ID: 34705593
    [No Abstract]   [Full Text] [Related]  

  • 17. Modulation of a spinal locomotor network by metabotropic glutamate receptors.
    Chapman RJ; Sillar KT
    Eur J Neurosci; 2007 Oct; 26(8):2257-68. PubMed ID: 17894819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a spinal locomotor rheostat.
    Zhang HY; Issberner J; Sillar KT
    Proc Natl Acad Sci U S A; 2011 Jul; 108(28):11674-9. PubMed ID: 21709216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stabilization of Gaze during Early Xenopus Development by Swimming-Related Utricular Signals.
    Lambert FM; Bacqué-Cazenave J; Le Seach A; Arama J; Courtand G; Tagliabue M; Eskiizmirliler S; Straka H; Beraneck M
    Curr Biol; 2020 Feb; 30(4):746-753.e4. PubMed ID: 31956031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altered gravity affects ventral root activity during fictive swimming and the static vestibuloocular reflex in young tadpoles (Xenopus laevis).
    Böser S; Dournon C; Gualandris-Parisot L; Horn E
    Arch Ital Biol; 2008 Mar; 146(1):1-20. PubMed ID: 18666444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.