BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 10821744)

  • 21. Polystyrene microplastics did not affect body growth and swimming activity in Xenopus laevis tadpoles.
    De Felice B; Bacchetta R; Santo N; Tremolada P; Parolini M
    Environ Sci Pollut Res Int; 2018 Dec; 25(34):34644-34651. PubMed ID: 30317408
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of early swimming in Xenopus laevis embryos: myotomal musculature, its innervation and activation.
    van Mier P; Armstrong J; Roberts A
    Neuroscience; 1989; 32(1):113-26. PubMed ID: 2586744
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adrenoreceptor-mediated modulation of the spinal locomotor pattern during swimming in Xenopus laevis tadpoles.
    Fischer H; Merrywest SD; Sillar KT
    Eur J Neurosci; 2001 Mar; 13(5):977-86. PubMed ID: 11264670
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Roles of ascending inhibition during two rhythmic motor patterns in Xenopus tadpoles.
    Green CS; Soffe SR
    J Neurophysiol; 1998 May; 79(5):2316-28. PubMed ID: 9582207
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Survey of the vestibulum, and behavior of Xenopus laevis larvae developed during a 7-days space flight.
    Briegleb W; Neubert J; Schatz A; Klein T; Kruse B
    Adv Space Res; 1986; 6(12):151-6. PubMed ID: 11537815
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lung use and development in Xenopus laevis tadpoles.
    Pronych S; Wassersug R
    Can J Zool; 1994; 72():738-43. PubMed ID: 11542516
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Swimming kinematics and respiratory behaviour of Xenopus laevis larvae raised in altered gravity.
    Fejtek M; Souza K; Neff A; Wassersug R
    J Exp Biol; 1998 Jun; 201(Pt 12):1917-26. PubMed ID: 9722430
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The development of swimming rhythmicity in post-embryonic Xenopus laevis.
    Sillar KT; Wedderburn JF; Simmers AJ
    Proc Biol Sci; 1991 Nov; 246(1316):147-53. PubMed ID: 1685239
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of the biocide methylisothiazolinone on Xenopus laevis wound healing and tail regeneration.
    Delos Santos N; Azmat S; Cuenca Y; Drenth J; Lauper J; Tseng AS
    Aquat Toxicol; 2016 Dec; 181():37-45. PubMed ID: 27810491
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Brainstem control of activity and responsiveness in resting frog tadpoles: tonic inhibition.
    Lambert TD; Li WC; Soffe SR; Roberts A
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Apr; 190(4):331-42. PubMed ID: 14991305
    [TBL] [Abstract][Full Text] [Related]  

  • 31. How neurons generate behavior in a hatchling amphibian tadpole: an outline.
    Roberts A; Li WC; Soffe SR
    Front Behav Neurosci; 2010; 4():16. PubMed ID: 20631854
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulative development of Xenopus laevis in microgravity.
    Black S; Larkin K; Jacqmotte N; Wassersug R; Pronych S; Souza K
    Adv Space Res; 1996; 17(6-7):209-17. PubMed ID: 11538618
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The neuromuscular basis of swimming movements in embryos of the amphibian Xenopus laevis.
    Kahn JA; Roberts A; Kashin SM
    J Exp Biol; 1982 Aug; 99():175-84. PubMed ID: 7130896
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The post-embryonic development of cell properties and synaptic drive underlying locomotor rhythm generation in Xenopus larvae.
    Sillar KT; Simmers AJ; Wedderburn JF
    Proc Biol Sci; 1992 Jul; 249(1324):65-70. PubMed ID: 1359549
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Heading in a new direction: implications of the revised fate map for understanding Xenopus laevis development.
    Lane MC; Sheets MD
    Dev Biol; 2006 Aug; 296(1):12-28. PubMed ID: 16750823
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Generation and Care of Xenopus laevis and Xenopus tropicalis Embryos.
    Wlizla M; McNamara S; Horb ME
    Methods Mol Biol; 2018; 1865():19-32. PubMed ID: 30151756
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The decision to move: response times, neuronal circuits and sensory memory in a simple vertebrate.
    Roberts A; Borisyuk R; Buhl E; Ferrario A; Koutsikou S; Li WC; Soffe SR
    Proc Biol Sci; 2019 Mar; 286(1899):20190297. PubMed ID: 30900536
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A behaviorally related developmental switch in nitrergic modulation of locomotor rhythmogenesis in larval Xenopus tadpoles.
    Currie SP; Combes D; Scott NW; Simmers J; Sillar KT
    J Neurophysiol; 2016 Mar; 115(3):1446-57. PubMed ID: 26763775
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intracellular recordings from spinal neurons during 'swimming' in paralysed amphibian embryos.
    Roberts A; Khan JA
    Philos Trans R Soc Lond B Biol Sci; 1982 Jan; 296(1081):213-28. PubMed ID: 17506219
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lateral line-mediated rheotactic behavior in tadpoles of the African clawed frog (Xenopus laevis).
    Simmons AM; Costa LM; Gerstein HB
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Sep; 190(9):747-58. PubMed ID: 15300386
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.