These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

356 related articles for article (PubMed ID: 10822254)

  • 1. Molecular recognition and binding of thermal hysteresis proteins to ice.
    Madura JD; Baran K; Wierzbicki A
    J Mol Recognit; 2000; 13(2):101-13. PubMed ID: 10822254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mechanism by which fish antifreeze proteins cause thermal hysteresis.
    Kristiansen E; Zachariassen KE
    Cryobiology; 2005 Dec; 51(3):262-80. PubMed ID: 16140290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beta-helix structure and ice-binding properties of a hyperactive antifreeze protein from an insect.
    Graether SP; Kuiper MJ; Gagné SM; Walker VK; Jia Z; Sykes BD; Davies PL
    Nature; 2000 Jul; 406(6793):325-8. PubMed ID: 10917537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis for the binding of a globular antifreeze protein to ice.
    Jia Z; DeLuca CI; Chao H; Davies PL
    Nature; 1996 Nov; 384(6606):285-8. PubMed ID: 8918883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A diminished role for hydrogen bonds in antifreeze protein binding to ice.
    Chao H; Houston ME; Hodges RS; Kay CM; Sykes BD; Loewen MC; Davies PL; Sönnichsen FD
    Biochemistry; 1997 Dec; 36(48):14652-60. PubMed ID: 9398184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The ice-binding site of Atlantic herring antifreeze protein corresponds to the carbohydrate-binding site of C-type lectins.
    Ewart KV; Li Z; Yang DS; Fletcher GL; Hew CL
    Biochemistry; 1998 Mar; 37(12):4080-5. PubMed ID: 9521729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The antifreeze potential of the spruce budworm thermal hysteresis protein.
    Tyshenko MG; Doucet D; Davies PL; Walker VK
    Nat Biotechnol; 1997 Sep; 15(9):887-90. PubMed ID: 9306405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alternative roles for putative ice-binding residues in type I antifreeze protein.
    Loewen MC; Chao H; Houston ME; Baardsnes J; Hodges RS; Kay CM; Sykes BD; Sönnichsen FD; Davies PL
    Biochemistry; 1999 Apr; 38(15):4743-9. PubMed ID: 10200162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mimicry of ice structure by surface hydroxyls and water of a beta-helix antifreeze protein.
    Liou YC; Tocilj A; Davies PL; Jia Z
    Nature; 2000 Jul; 406(6793):322-4. PubMed ID: 10917536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and function of antifreeze proteins.
    Davies PL; Baardsnes J; Kuiper MJ; Walker VK
    Philos Trans R Soc Lond B Biol Sci; 2002 Jul; 357(1423):927-35. PubMed ID: 12171656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A complex family of highly heterogeneous and internally repetitive hyperactive antifreeze proteins from the beetle Tenebrio molitor.
    Liou YC; Thibault P; Walker VK; Davies PL; Graham LA
    Biochemistry; 1999 Aug; 38(35):11415-24. PubMed ID: 10471292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of steric mutations on the structure of type III antifreeze protein and its interaction with ice.
    DeLuca CI; Davies PL; Ye Q; Jia Z
    J Mol Biol; 1998 Jan; 275(3):515-25. PubMed ID: 9466928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of functional properties of two fungal antifreeze proteins from Antarctomyces psychrotrophicus and Typhula ishikariensis.
    Xiao N; Suzuki K; Nishimiya Y; Kondo H; Miura A; Tsuda S; Hoshino T
    FEBS J; 2010 Jan; 277(2):394-403. PubMed ID: 20030710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ice-binding structure and mechanism of an antifreeze protein from winter flounder.
    Sicheri F; Yang DS
    Nature; 1995 Jun; 375(6530):427-31. PubMed ID: 7760940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conjugation of type I antifreeze protein to polyallylamine increases thermal hysteresis activity.
    Can O; Holland NB
    Bioconjug Chem; 2011 Oct; 22(10):2166-71. PubMed ID: 21905742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-function relationship in the globular type III antifreeze protein: identification of a cluster of surface residues required for binding to ice.
    Chao H; Sönnichsen FD; DeLuca CI; Sykes BD; Davies PL
    Protein Sci; 1994 Oct; 3(10):1760-9. PubMed ID: 7849594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative modeling of the three-dimensional structure of type II antifreeze protein.
    Sönnichsen FD; Sykes BD; Davies PL
    Protein Sci; 1995 Mar; 4(3):460-71. PubMed ID: 7540906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual function of the hydration layer around an antifreeze protein revealed by atomistic molecular dynamics simulations.
    Nutt DR; Smith JC
    J Am Chem Soc; 2008 Oct; 130(39):13066-73. PubMed ID: 18774821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A two-dimensional adsorption kinetic model for thermal hysteresis activity in antifreeze proteins.
    Li QZ; Yeh Y; Liu JJ; Feeney RE; Krishnan VV
    J Chem Phys; 2006 May; 124(20):204702. PubMed ID: 16774359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding the mechanism of ice binding by type III antifreeze proteins.
    Antson AA; Smith DJ; Roper DI; Lewis S; Caves LS; Verma CS; Buckley SL; Lillford PJ; Hubbard RE
    J Mol Biol; 2001 Jan; 305(4):875-89. PubMed ID: 11162099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.