BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 10822499)

  • 1. Volume regulation by Amphiuma red blood cells. The membrane potential and its implications regarding the nature of the ion-flux pathways.
    Cala PM
    J Gen Physiol; 1980 Dec; 76(6):683-708. PubMed ID: 10822499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell volume regulation by Amphiuma red blood cells. The role of Ca+2 as a modulator of alkali metal/H+ exchange.
    Cala PM
    J Gen Physiol; 1983 Dec; 82(6):761-84. PubMed ID: 6420507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Volume regulation by flounder red blood cells in anisotonic media.
    Cala PM
    J Gen Physiol; 1977 May; 69(5):537-52. PubMed ID: 864431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Volume-activated Cl(-)-independent and Cl(-)-dependent K+ pathways in trout red blood cells.
    Guizouarn H; Harvey BJ; Borgese F; Gabillat N; Garcia-Romeu F; Motais R
    J Physiol; 1993 Mar; 462():609-26. PubMed ID: 8392575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Further studies of the volume-regulatory response of Amphiuma red cells in hypertonic media. Evidence for amiloride-sensitive Na/H exchange.
    Kregenow FM; Caryk T; Siebens AW
    J Gen Physiol; 1985 Oct; 86(4):565-84. PubMed ID: 2997365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of Na+/H+ and K+/H+ exchange by calyculin A in Amphiuma tridactylum red blood cells: implications for the control of volume-induced ion flux activity.
    Ortiz-Acevedo A; Rigor RR; Maldonado HM; Cala PM
    Am J Physiol Cell Physiol; 2008 Nov; 295(5):C1316-25. PubMed ID: 18799654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pH regulatory Na/H exchange by Amphiuma red blood cells.
    Cala PM; Maldonado HM
    J Gen Physiol; 1994 Jun; 103(6):1035-53. PubMed ID: 7931136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of electroneutral K flux in Amphiuma red blood cells by N-ethylmaleimide. Distinction between K/H exchange and KCl cotransport.
    Adorante JS; Cala PM
    J Gen Physiol; 1987 Aug; 90(2):209-27. PubMed ID: 3655717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell volume and pH regulation by the Amphiuma red blood cell: a model for hypoxia-induced cell injury.
    Cala PM; Maldonado H; Anderson SE
    Comp Biochem Physiol Comp Physiol; 1992 Aug; 102(4):603-8. PubMed ID: 1355022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Volume regulation in red blood cells of the frog Rana temporaria after osmotic shrinkage and swelling.
    Gusev GP; Lapin AV; Agulakova NI
    Membr Cell Biol; 1997; 11(3):305-17. PubMed ID: 9460050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coordinated control of volume regulatory Na+/H+ and K+/H+ exchange pathways in Amphiuma red blood cells.
    Ortiz-Acevedo A; Rigor RR; Maldonado HM; Cala PM
    Am J Physiol Cell Physiol; 2010 Mar; 298(3):C510-20. PubMed ID: 19940069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell volume regulation in nonrenal epithelia.
    Reus L
    Ren Physiol Biochem; 1988; 11(3-5):187-201. PubMed ID: 3074398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Volume regulation by Amphiuma red blood cells: cytosolic free Ca and alkali metal-H exchange.
    Cala PM; Mandel LJ; Murphy E
    Am J Physiol; 1986 Mar; 250(3 Pt 1):C423-9. PubMed ID: 2420196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of ion transport systems during cell volume regulation.
    Eveloff JL; Warnock DG
    Am J Physiol; 1987 Jan; 252(1 Pt 2):F1-10. PubMed ID: 3544865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of anisotonic media on volume, ion and amino-acid content and membrane potential of kidney cells (MDCK) in culture.
    Roy G; Sauvé R
    J Membr Biol; 1987; 100(1):83-96. PubMed ID: 3430568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Volume regulation by flounder red blood cells: the role of the membrane potential.
    Cala PM
    J Exp Zool; 1977 Mar; 199(3):339-44. PubMed ID: 850115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of WNK Kinases in the Modulation of Cell Volume.
    de Los Heros P; Pacheco-Alvarez D; Gamba G
    Curr Top Membr; 2018; 81():207-235. PubMed ID: 30243433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Labeling of the Amphiuma erythrocyte K+/H+ exchanger with H2DIDS.
    Maldonado HM; Cala PM
    Am J Physiol; 1994 Oct; 267(4 Pt 1):C1002-12. PubMed ID: 7943263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of osmotic stresses on isolated rat hepatocytes. II. Modulation of intracellular pH.
    Gleeson D; Corasanti JG; Boyer JL
    Am J Physiol; 1990 Feb; 258(2 Pt 1):G299-307. PubMed ID: 2305896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of separate K+ and Cl- channels and of Na+/Cl- cotransport in volume regulation in Ehrlich cells.
    Hoffmann EK
    Fed Proc; 1985 Jun; 44(9):2513-9. PubMed ID: 2581818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.