BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 10822845)

  • 1. [Oscillations in the oxidation-reduction potential of the brain tissue in rats developing during wakefulness and slow-wave sleep].
    Shvets-Ténéta-Guriĭ TB; Troshin GI; Dubinin AG; Novikova MR
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2000; 50(2):261-73. PubMed ID: 10822845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Potentiometric monitoring of the redox state of brain structures of freely-moving rats in sleep-wake cycles].
    Shvets-Ténéta-Guriĭ TB; Troshin GI; Novikova MR; Khonicheva NM; Shostak OA; Borovskaia IV
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2002; 52(5):585-91. PubMed ID: 12449837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [The modelling of the glycolytic oscillations in the potential of the oxidative-reductive status of the brain tissue in waking and anesthetized rats].
    Shvets-Ténéta-Guriĭ TB; Aleksandrov VI; Dubinin AG; Mats VN; Novikova MR; Troshin GI
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1999; 49(4):675-83. PubMed ID: 10512029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Rhythms of slow-wave sleep and wakefulness in fluctuations of the potential of the oxidative-reductive status of the cerebral cortex].
    Svets-Ténéta-Guriĭ TB; Mats VN; Kovchegova OB
    Biull Eksp Biol Med; 1989 Sep; 108(9):259-61. PubMed ID: 2611377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring of the oxidation-reduction state of brain structures in freely moving rats during sleep-waking cycles by potentiometric recording.
    Shvets-Ténéta-Gurii TB; Troshin GI; Novikova MR; Khonicheva NM; Shostak OA; Borovskaya IV
    Neurosci Behav Physiol; 2003 Sep; 33(7):645-50. PubMed ID: 14552530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Variations of hypothalamic and cortical prostaglandins and monoamines reveal transitions in arousal states: microdialysis study in the rat].
    Nicolaidis S; Gerozissis K; Orosco M
    Rev Neurol (Paris); 2001 Nov; 157(11 Pt 2):S26-33. PubMed ID: 11924034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The wakefulness-sleep cycle in rats with a genetic predisposition to catalepsy].
    Oganesian GA; Khomutetskaia OE; Bogoslovskiĭ MM; Karmanova IG; Kolpakov VG; Barykina NN
    Zh Evol Biokhim Fiziol; 1990; 26(3):376-82. PubMed ID: 2220207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The comodulation measure of neuronal oscillations with general harmonic wavelet bicoherence and application to sleep analysis.
    Li X; Li D; Voss LJ; Sleigh JW
    Neuroimage; 2009 Nov; 48(3):501-14. PubMed ID: 19615451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Changes in the oxidation-reduction potential of the rat brain during nembutal anesthesia].
    Shvets-Ténéta-Guriĭ TB; Ivanova-Anninskaia EL
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1997; 47(3):523-31. PubMed ID: 9273792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Changes in the rabbit brain cortex redox potential accompaning episodes of ECoG-arousal during slow-wave sleep].
    Shvets-Ténéta-Guriĭ TB; Troshin GI; Dubinin AG
    Ross Fiziol Zh Im I M Sechenova; 2006 Oct; 92(10):1161-72. PubMed ID: 17216713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-frequency oscillations of cortical oxidative metabolism in waking and sleep.
    Vern BA; Schuette WH; Leheta B; Juel VC; Radulovacki M
    J Cereb Blood Flow Metab; 1988 Apr; 8(2):215-26. PubMed ID: 2830291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling sleep and wakefulness in the thalamocortical system.
    Hill S; Tononi G
    J Neurophysiol; 2005 Mar; 93(3):1671-98. PubMed ID: 15537811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The effect of unilateral destruction of the caudate nucleus with kainic acid on the nature of the electrical activity in the rat brain in the wakefulness-sleep cycle].
    Vataev SI; Titkov ES; Oganesian GA
    Zh Evol Biokhim Fiziol; 1996; 32(5):613-9. PubMed ID: 9092238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 7-12 Hz cortical oscillations: behavioral context and dynamics of prefrontal neuronal ensembles.
    Sakata S; Yamamori T; Sakurai Y
    Neuroscience; 2005; 134(4):1099-111. PubMed ID: 16019153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Boosting slow oscillations during sleep potentiates memory.
    Marshall L; Helgadóttir H; Mölle M; Born J
    Nature; 2006 Nov; 444(7119):610-3. PubMed ID: 17086200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuronal phenomena associated with vigilance and consciousness: from cellular mechanisms to electroencephalographic patterns.
    Coenen AM
    Conscious Cogn; 1998 Mar; 7(1):42-53. PubMed ID: 9521831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Dynamics of local shifts in oscillations and energy metabolism of the rabbit cerebral cortex during formation of a conditioned defensive reflex].
    Svets-Ténéta-Guriĭ TB; Troshin GI; Mats VN; Borovskaia IV
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2001; 51(6):694-703. PubMed ID: 11871033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chloramphenicol decreases brain glucose utilization and modifies the sleep-wake cycle architecture in rats.
    Moulin-Sallanon M; Millet P; Rousset C; Zimmer L; Debilly G; Petit JM; Cespuglio R; Magistretti P; Ibáñez V
    J Neurochem; 2005 Jun; 93(6):1623-32. PubMed ID: 15935079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-frequency oscillations recorded in human medial temporal lobe during sleep.
    Staba RJ; Wilson CL; Bragin A; Jhung D; Fried I; Engel J
    Ann Neurol; 2004 Jul; 56(1):108-15. PubMed ID: 15236407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Midfrequency cortico-thalamic oscillations and the sleep cycle: genetic, time of day and age effects.
    van Luijtelaar G; Bikbaev A
    Epilepsy Res; 2007 Mar; 73(3):259-65. PubMed ID: 17156975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.