These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 10823386)

  • 1. Could anti-inflammatory actions of catecholamines explain the possible beneficial effects of supranormal oxygen delivery in critically ill surgical patients?
    Uusaro A; Russell JA
    Intensive Care Med; 2000 Mar; 26(3):299-304. PubMed ID: 10823386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of maximizing oxygen delivery on morbidity and mortality rates in critically ill patients: a prospective, randomized, controlled study.
    Yu M; Levy MM; Smith P; Takiguchi SA; Miyasaki A; Myers SA
    Crit Care Med; 1993 Jun; 21(6):830-8. PubMed ID: 8504649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Maximizing O2-transport in critical illness. A rational therapeutic concept?].
    Forst H
    Anaesthesist; 1997 Jan; 46(1):46-52. PubMed ID: 9082869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Does increasing oxygen delivery improve outcome in the critically ill? No.
    Ronco JJ; Fenwick JC; Tweeddale MG
    Crit Care Clin; 1996 Jul; 12(3):645-59. PubMed ID: 8839596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supranormal oxygen delivery in critical illness.
    Matuschak GM
    New Horiz; 1997 Aug; 5(3):233-8. PubMed ID: 9259336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The oxygen delivery/consumption controversy. Approaches to management of the critically ill.
    Russell JA; Phang PT
    Am J Respir Crit Care Med; 1994 Feb; 149(2 Pt 1):533-7. PubMed ID: 8306058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of the critical oxygen delivery for anaerobic metabolism in critically ill septic and nonseptic humans.
    Ronco JJ; Fenwick JC; Tweeddale MG; Wiggs BR; Phang PT; Cooper DJ; Cunningham KF; Russell JA; Walley KR
    JAMA; 1993 Oct; 270(14):1724-30. PubMed ID: 8411504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygen transport goals in the resuscitation of critically ill patients.
    Erstad BL
    Ann Pharmacother; 1994 Nov; 28(11):1273-84. PubMed ID: 7849343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The supranormal oxygen delivery trials controversy. Dobutamine in Sepsis Study Group.
    Vallet B; Chopin C
    Crit Care Med; 2000 Apr; 28(4):1257-8. PubMed ID: 10809336
    [No Abstract]   [Full Text] [Related]  

  • 10. Different response of oxygen consumption and cardiac output to various endogenous and synthetic catecholamines in awake dogs.
    Scheeren TW; Arndt JO
    Crit Care Med; 2000 Dec; 28(12):3861-8. PubMed ID: 11153627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of serum cytokine levels by a novel superoxide dismutase mimetic, M40401, in an Escherichia coli model of septic shock: correlation with preserved circulating catecholamines.
    Macarthur H; Couri DM; Wilken GH; Westfall TC; Lechner AJ; Matuschak GM; Chen Z; Salvemini D
    Crit Care Med; 2003 Jan; 31(1):237-45. PubMed ID: 12545022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response of critically ill patients to treatment aimed at achieving supranormal oxygen delivery and consumption. Relationship to outcome.
    Hayes MA; Yau EH; Timmins AC; Hinds CJ; Watson D
    Chest; 1993 Mar; 103(3):886-95. PubMed ID: 8449087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship of mortality to increasing oxygen delivery in patients > or = 50 years of age: a prospective, randomized trial.
    Yu M; Burchell S; Hasaniya NW; Takanishi DM; Myers SA; Takiguchi SA
    Crit Care Med; 1998 Jun; 26(6):1011-9. PubMed ID: 9635648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interleukin-1beta and catecholamines synergistically stimulate interleukin-6 release from rat C6 glioma cells in vitro: a potential role for lysophosphatidylcholine.
    Zumwalt JW; Thunstrom BJ; Spangelo BL
    Endocrinology; 1999 Feb; 140(2):888-96. PubMed ID: 9927320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impaired oxygen extraction in sepsis: is supranormal oxygen delivery helpful?
    Haupt MT
    Crit Care Med; 1997 Jun; 25(6):904-5. PubMed ID: 9201039
    [No Abstract]   [Full Text] [Related]  

  • 16. Effect of catecholamines on intracellular cytokine synthesis in human monocytes.
    Röntgen P; Sablotzki A; Simm A; Silber RE; Czeslick E
    Eur Cytokine Netw; 2004; 15(1):14-23. PubMed ID: 15217748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insulin in the critically ill with focus on cytokines, reactive oxygen species, HLA-DR expression.
    Das UN
    J Assoc Physicians India; 2007 Jul; 55 Suppl():56-65. PubMed ID: 17927013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adding fuel to the fire--the supranormal oxygen delivery trials controversy.
    Russell JA
    Crit Care Med; 1998 Jun; 26(6):981-3. PubMed ID: 9635635
    [No Abstract]   [Full Text] [Related]  

  • 19. Safety and efficacy of molgramostim as an adjunctive therapy in critically ill patients with severe sepsis.
    Myrianthefs PM; Karabatsos EG; Karatzas SP; Boutzouka EG; Venetsanou KF; Evagelopoulou PL; Fildissis GA; Legakis NJ; Baltopoulos GJ
    Scand J Infect Dis; 2003; 35(3):175-9. PubMed ID: 12751712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beta-adrenergic blockade exacerbates sepsis-induced changes in tumor necrosis factor alpha and interleukin-6 in skeletal muscle and is associated with impaired translation initiation.
    Lang CH; Nystrom G; Frost RA
    J Trauma; 2008 Feb; 64(2):477-86. PubMed ID: 18301218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.