BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 10823661)

  • 1. Increased degradation of newly synthesized interferon-gamma (IFN-gamma) in anti CD3-stimulated lymphocytes treated with glycoprotein processing inhibitors.
    Kosuge T; Toyoshima S
    Biol Pharm Bull; 2000 May; 23(5):545-8. PubMed ID: 10823661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of inhibitors of glycoprotein processing on cytokine secretion and production in anti CD3-stimulated T cells.
    Kosuge T; Tamura T; Nariuchi H; Toyoshima S
    Biol Pharm Bull; 2000 Jan; 23(1):1-5. PubMed ID: 10706401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The related molecular chaperones calnexin and calreticulin differentially associate with nascent T cell antigen receptor proteins within the endoplasmic reticulum.
    Van Leeuwen JE; Kearse KP
    J Biol Chem; 1996 Oct; 271(41):25345-9. PubMed ID: 8810299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glycoprotein degradation: do sugars hold the key?
    Frigerio L; Lord JM
    Curr Biol; 2000 Sep; 10(18):R674-7. PubMed ID: 10996809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lectins as chaperones in glycoprotein folding.
    Trombetta ES; Helenius A
    Curr Opin Struct Biol; 1998 Oct; 8(5):587-92. PubMed ID: 9818262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rubella virus glycoprotein interaction with the endoplasmic reticulum calreticulin and calnexin.
    Nakhasi HL; Ramanujam M; Atreya CD; Hobman TC; Lee N; Esmaili A; Duncan RC
    Arch Virol; 2001; 146(1):1-14. PubMed ID: 11266204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of the thiol-dependent reductase ERp57 with nascent glycoproteins.
    Oliver JD; van der Wal FJ; Bulleid NJ; High S
    Science; 1997 Jan; 275(5296):86-8. PubMed ID: 8974399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oligosaccharide binding characteristics of the molecular chaperones calnexin and calreticulin.
    Vassilakos A; Michalak M; Lehrman MA; Williams DB
    Biochemistry; 1998 Mar; 37(10):3480-90. PubMed ID: 9521669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transient association of calnexin and calreticulin with newly synthesized G1 and G2 glycoproteins of uukuniemi virus (family Bunyaviridae).
    Veijola J; Pettersson RF
    J Virol; 1999 Jul; 73(7):6123-7. PubMed ID: 10364370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosynthesis of inositol trisphosphate receptors: selective association with the molecular chaperone calnexin.
    Joseph SK; Boehning D; Bokkala S; Watkins R; Widjaja J
    Biochem J; 1999 Aug; 342 ( Pt 1)(Pt 1):153-61. PubMed ID: 10432312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of newly synthesized apolipoprotein B with calnexin and calreticulin requires glucose trimming in the endoplasmic reticulum.
    Tatu U; Helenius A
    Biosci Rep; 1999 Jun; 19(3):189-96. PubMed ID: 10513896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ERp57 functions as a subunit of specific complexes formed with the ER lectins calreticulin and calnexin.
    Oliver JD; Roderick HL; Llewellyn DH; High S
    Mol Biol Cell; 1999 Aug; 10(8):2573-82. PubMed ID: 10436013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transient, lectin-like association of calreticulin with folding intermediates of cellular and viral glycoproteins.
    Peterson JR; Ora A; Van PN; Helenius A
    Mol Biol Cell; 1995 Sep; 6(9):1173-84. PubMed ID: 8534914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deglucosylation of N-linked glycans is an important step in the dissociation of calreticulin-class I-TAP complexes.
    van Leeuwen JE; Kearse KP
    Proc Natl Acad Sci U S A; 1996 Nov; 93(24):13997-4001. PubMed ID: 8943049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trypanosoma cruzi calreticulin is a lectin that binds monoglucosylated oligosaccharides but not protein moieties of glycoproteins.
    Labriola C; Cazzulo JJ; Parodi AJ
    Mol Biol Cell; 1999 May; 10(5):1381-94. PubMed ID: 10233151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glycoprotein folding in the endoplasmic reticulum: a tale of three chaperones?
    High S; Lecomte FJ; Russell SJ; Abell BM; Oliver JD
    FEBS Lett; 2000 Jun; 476(1-2):38-41. PubMed ID: 10878246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The thiol-dependent reductase ERp57 interacts specifically with N-glycosylated integral membrane proteins.
    Elliott JG; Oliver JD; High S
    J Biol Chem; 1997 May; 272(21):13849-55. PubMed ID: 9153243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Folding of the human immunodeficiency virus type 1 envelope glycoprotein in the endoplasmic reticulum.
    Land A; Braakman I
    Biochimie; 2001 Aug; 83(8):783-90. PubMed ID: 11530211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of interactions of sendai virus envelope glycoproteins, F and HN, with endoplasmic reticulum-resident molecular chaperones, BiP, calnexin, and calreticulin.
    Tomita Y; Yamashita T; Sato H; Taira H
    J Biochem; 1999 Dec; 126(6):1090-100. PubMed ID: 10578061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of endoplasmic reticulum chaperones in the folding of hepatitis C virus glycoproteins.
    Choukhi A; Ung S; Wychowski C; Dubuisson J
    J Virol; 1998 May; 72(5):3851-8. PubMed ID: 9557669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.