These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 10824121)
1. Detection of modifications in the glucose metabolism induced by genetic mutations in Saccharomyces cerevisiae by 13C- and H-NMR spectroscopy. Herve M; Buffin-Meyer B; Bouet F; Son TD Eur J Biochem; 2000 Jun; 267(11):3337-44. PubMed ID: 10824121 [TBL] [Abstract][Full Text] [Related]
2. Effects of amphotericin B on the glucose metabolism in Saccharomyces cerevisiae cells. Studies by 13C-, 1H-NMR and biochemical methods. Tran-Dinh S; Hervé M; Lebourguais O; Jerome M; Wietzerbin J Eur J Biochem; 1991 Apr; 197(1):271-9. PubMed ID: 2015823 [TBL] [Abstract][Full Text] [Related]
3. Determination of flux through different metabolite pathways in Saccharomyces cerevisiae by 1H-NMR and 13C-NMR spectroscopy. Tran-Dinh S; Herve M; Wietzerbin J Eur J Biochem; 1991 Nov; 201(3):715-21. PubMed ID: 1682149 [TBL] [Abstract][Full Text] [Related]
4. Mathematical model for evaluating the Krebs cycle flux with non-constant glutamate-pool size by 13C-NMR spectroscopy. Evidence for the existence of two types of Krebs cycles in cells. Tran-Dinh S; Beganton F; Nguyen TT; Bouet F; Herve M Eur J Biochem; 1996 Dec; 242(2):220-7. PubMed ID: 8973636 [TBL] [Abstract][Full Text] [Related]
5. Influence of low glycolytic activities in gcr1 and gcr2 mutants on the expression of other metabolic pathway genes in Saccharomyces cerevisiae. Sasaki H; Uemura H Yeast; 2005 Jan; 22(2):111-27. PubMed ID: 15645478 [TBL] [Abstract][Full Text] [Related]
6. Effects of 2-deoxy-D-glucose on the glucose metabolism in Saccharomyces cerevisiae studied by multinuclear-NMR spectroscopy and biochemical methods. Hervé M; Wietzerbin J; Lebourguais O; Tran-Dinh S Biochimie; 1992 Dec; 74(12):1103-15. PubMed ID: 1363373 [TBL] [Abstract][Full Text] [Related]
7. Mathematical models for determining metabolic fluxes through the citric acid and the glyoxylate cycles in Saccharomyces cerevisiae by 13C-NMR spectroscopy. Tran-Dinh S; Bouet F; Huynh QT; Herve M Eur J Biochem; 1996 Dec; 242(3):770-8. PubMed ID: 9022708 [TBL] [Abstract][Full Text] [Related]
8. Non-cooperative effects of glucose and 2-deoxyglucose on their metabolism in Saccharomyces cerevisiae studied by 1H-NMR and 13C-NMR spectroscopy. Herve M; Wietzerbin J; Tran-Dinh S Eur J Biochem; 1993 Nov; 218(1):221-8. PubMed ID: 8243467 [TBL] [Abstract][Full Text] [Related]
9. Trehalose, glycogen and ethanol metabolism in the gcr1 mutant of Saccharomyces cerevisiae. Seker T; Hamamci H Folia Microbiol (Praha); 2003; 48(2):193-8. PubMed ID: 12800502 [TBL] [Abstract][Full Text] [Related]
10. Comparative study of the effects of amphotericin B on the glucose metabolism in Saccharomyces cerevisiae in K(+)- and Na(+)-rich media. Wietzerbin J; Herve M; Lebourguais O; Tran-Dinh S Biochim Biophys Acta; 1992 Aug; 1136(2):105-12. PubMed ID: 1324008 [TBL] [Abstract][Full Text] [Related]
11. Influence of glucose on the deoxyglucose metabolism in S cerevisiae: detection and identification of deoxyglucose and trehalose derivatives by 1H- and 13C-NMR spectroscopy. Wietzerbin J; Hervé M; Un S; Neumann JM; Namane A; Tran-Dinh S Biochimie; 1993; 75(9):825-30. PubMed ID: 8274535 [TBL] [Abstract][Full Text] [Related]
12. Analysis and modification of trehalose 6-phosphate levels in the yeast Saccharomyces cerevisiae with the use of Bacillus subtilis phosphotrehalase. van Vaeck C; Wera S; van Dijck P; Thevelein JM Biochem J; 2001 Jan; 353(Pt 1):157-162. PubMed ID: 11115409 [TBL] [Abstract][Full Text] [Related]
13. A chimeric subunit of yeast transcription factor IIIC forms a subcomplex with tau95. Manaud N; Arrebola R; Buffin-Meyer B; Lefebvre O; Voss H; Riva M; Conesa C; Sentenac A Mol Cell Biol; 1998 Jun; 18(6):3191-200. PubMed ID: 9584160 [TBL] [Abstract][Full Text] [Related]
14. The GCR1 gene function is essential for glycogen and trehalose metabolism in Saccharomyces cerevisiae. Türkel S Folia Microbiol (Praha); 2002; 47(6):663-6. PubMed ID: 12630316 [TBL] [Abstract][Full Text] [Related]
15. A multinuclear magnetic resonance study of a cls11 mutant showing the Pet- phenotype of Saccharomyces cerevisiae. Galons JP; Tanida I; Ohya Y; Anraku Y; Arata Y Eur J Biochem; 1990 Oct; 193(1):111-9. PubMed ID: 2226430 [TBL] [Abstract][Full Text] [Related]
17. ERV1 is involved in the cell-division cycle and the maintenance of mitochondrial genomes in Saccharomyces cerevisiae. Lisowsky T Curr Genet; 1994 Jul; 26(1):15-20. PubMed ID: 7954891 [TBL] [Abstract][Full Text] [Related]
18. Channeling of TCA cycle intermediates in Saccharomyces cerevisiae. Ira ; Sonawat HM Indian J Biochem Biophys; 1998 Oct; 35(5):260-5. PubMed ID: 10410458 [TBL] [Abstract][Full Text] [Related]
19. Evidence for orientation-conserved transfer in the TCA cycle in Saccharomyces cerevisiae: 13C NMR studies. Sumegi B; Sherry AD; Malloy CR; Srere PA Biochemistry; 1993 Nov; 32(47):12725-9. PubMed ID: 8251492 [TBL] [Abstract][Full Text] [Related]
20. Non-invasive measurements of myocardial carbon metabolism using in vivo 13C NMR spectroscopy. Ziegler A; Zaugg CE; Buser PT; Seelig J; Künnecke B NMR Biomed; 2002 May; 15(3):222-34. PubMed ID: 11968138 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]