These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 10824265)

  • 1. What covariance mechanisms underlie green/red equiluminance, luminance contrast sensitivity and chromatic (green/red) contrast sensitivity?
    Dobkins KR; Gunther KL; Peterzell DH
    Vision Res; 2000; 40(6):613-28. PubMed ID: 10824265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Individual differences in chromatic (red/green) contrast sensitivity are constrained by the relative number of L- versus M-cones in the eye.
    Gunther KL; Dobkins KR
    Vision Res; 2002 May; 42(11):1367-78. PubMed ID: 12044743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pattern-reversal electroretinogram in response to chromatic stimuli: II. Monkey.
    Morrone C; Fiorentini A; Bisti S; Porciatti V; Burr DC
    Vis Neurosci; 1994; 11(5):873-84. PubMed ID: 7947401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial frequency tuned covariance channels for red-green and luminance-modulated gratings: psychophysical data from human adults.
    Peterzell DH; Teller DY
    Vision Res; 2000; 40(4):417-30. PubMed ID: 10820622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker.
    Lee BB; Martin PR; Valberg A
    J Physiol; 1989 Jul; 414():223-43. PubMed ID: 2607430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial frequency tuned covariance channels for red-green and luminance-modulated gratings: psychophysical data from human infants.
    Peterzell DH; Chang SK; Teller DY
    Vision Res; 2000; 40(4):431-44. PubMed ID: 10820623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of red-green equiluminance points in humans and macaques: evidence for different L:M cone ratios between species.
    Dobkins KR; Thiele A; Albright TD
    J Opt Soc Am A Opt Image Sci Vis; 2000 Mar; 17(3):545-56. PubMed ID: 10708036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Infant temporal contrast sensitivity functions (tCSFs) mature earlier for luminance than for chromatic stimuli: evidence for precocious magnocellular development?
    Dobkins KR; Anderson CM; Lia B
    Vision Res; 1999 Sep; 39(19):3223-39. PubMed ID: 10615492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Luminance mechanisms mediate the motion of red-green isoluminant gratings: the role of "temporal chromatic aberration".
    Mullen KT; Yoshizawa T; Baker CL
    Vision Res; 2003 May; 43(11):1235-47. PubMed ID: 12726830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromatic and luminance contrast sensitivities in asymptomatic carriers from a large Brazilian pedigree of 11778 Leber hereditary optic neuropathy.
    Ventura DF; Quiros P; Carelli V; Salomão SR; Gualtieri M; Oliveira AG; Costa MF; Berezovsky A; Sadun F; de Negri AM; Sadun AA
    Invest Ophthalmol Vis Sci; 2005 Dec; 46(12):4809-14. PubMed ID: 16303983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Infant color vision: temporal contrast sensitivity functions for chromatic (red/green) stimuli in 3-month-olds.
    Dobkins KR; Lia B; Teller DY
    Vision Res; 1997 Oct; 37(19):2699-716. PubMed ID: 9373669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bipolar or rectified chromatic detection mechanisms?
    Sankeralli MJ; Mullen KT
    Vis Neurosci; 2001; 18(1):127-35. PubMed ID: 11347810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Red--green and blue--yellow mechanisms are matched in sensitivity for temporal and spatial modulation.
    McKeefry DJ; Murray IJ; Kulikowski JJ
    Vision Res; 2001 Jan; 41(2):245-55. PubMed ID: 11163858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of sawtooth polarity on chromatic and luminance detection.
    DeMarco PJ; Smith VC; Pokorny J
    Vis Neurosci; 1994; 11(3):491-9. PubMed ID: 8038124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of the temporal properties of visual evoked potentials to luminance and colour contrast in infants.
    Morrone MC; Fiorentini A; Burr DC
    Vision Res; 1996 Oct; 36(19):3141-55. PubMed ID: 8917775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling spatial contrast sensitivity functions for chromatic and luminance-modulated gratings.
    Rovamo JM; Kankaanpää MI; Kukkonen H
    Vision Res; 1999 Jul; 39(14):2387-98. PubMed ID: 10367059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatio-chromatic contrast sensitivity under mesopic and photopic light levels.
    Wuerger S; Ashraf M; Kim M; Martinovic J; Pérez-Ortiz M; Mantiuk RK
    J Vis; 2020 Apr; 20(4):23. PubMed ID: 32347909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms subserving temporal modulation sensitivity in silent-cone substitution.
    Smith VC; Pokorny J; Davis M; Yeh T
    J Opt Soc Am A Opt Image Sci Vis; 1995 Feb; 12(2):241-9. PubMed ID: 7869155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contributions of human long-wave and middle-wave cones to motion detection.
    Stromeyer CF; Kronauer RE; Ryu A; Chaparro A; Eskew RT
    J Physiol; 1995 May; 485 ( Pt 1)(Pt 1):221-43. PubMed ID: 7658377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anisotropy in the chromatic channel: a horizontal-vertical effect.
    Murasugi CM; Cavanagh P
    Spat Vis; 1988; 3(4):281-91. PubMed ID: 3153675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.