These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 10824432)
1. Time-dependent closed form solutions for fully competitive enzyme reactions. Schnell S; Mendoza C Bull Math Biol; 2000 Mar; 62(2):321-36. PubMed ID: 10824432 [TBL] [Abstract][Full Text] [Related]
2. The total quasi-steady-state approximation for fully competitive enzyme reactions. Pedersena MG; Bersani AM; Bersani E Bull Math Biol; 2007 Jan; 69(1):433-57. PubMed ID: 16850351 [TBL] [Abstract][Full Text] [Related]
3. Enzyme kinetics at high enzyme concentration. Schnell S; Maini PK Bull Math Biol; 2000 May; 62(3):483-99. PubMed ID: 10812718 [TBL] [Abstract][Full Text] [Related]
4. Stochastic chemical kinetics and the total quasi-steady-state assumption: application to the stochastic simulation algorithm and chemical master equation. Macnamara S; Bersani AM; Burrage K; Sidje RB J Chem Phys; 2008 Sep; 129(9):095105. PubMed ID: 19044893 [TBL] [Abstract][Full Text] [Related]
5. Theory and simulation of diffusion-controlled Michaelis-Menten kinetics for a static enzyme in solution. Park S; Agmon N J Phys Chem B; 2008 May; 112(19):5977-87. PubMed ID: 18220382 [TBL] [Abstract][Full Text] [Related]
6. Explicit analytic approximations for time-dependent solutions of the generalized integrated Michaelis-Menten equation. Goličnik M Anal Biochem; 2011 Apr; 411(2):303-5. PubMed ID: 21241654 [TBL] [Abstract][Full Text] [Related]
7. Generalized theoretical and practical treatment of the kinetics of an enzyme-catalyzed reaction in the presence of an enzyme equimolar irreversible inhibitor. Golicnik M; Stojan J J Chem Inf Comput Sci; 2003; 43(5):1486-93. PubMed ID: 14502482 [TBL] [Abstract][Full Text] [Related]
8. Michaelis-Menten kinetics at high enzyme concentrations. Tzafriri AR Bull Math Biol; 2003 Nov; 65(6):1111-29. PubMed ID: 14607291 [TBL] [Abstract][Full Text] [Related]
9. Quasi-steady-state kinetics at enzyme and substrate concentrations in excess of the Michaelis-Menten constant. Rami Tzafriri A; Edelman ER J Theor Biol; 2007 Apr; 245(4):737-48. PubMed ID: 17234216 [TBL] [Abstract][Full Text] [Related]
11. A full stochastic description of the Michaelis-Menten reaction for small systems. Arányi P; Tóth J Acta Biochim Biophys Acad Sci Hung; 1977; 12(4):375-88. PubMed ID: 613716 [TBL] [Abstract][Full Text] [Related]
12. About and beyond the Henri-Michaelis-Menten rate equation for single-substrate enzyme kinetics. Bajzer Z; Strehler EE Biochem Biophys Res Commun; 2012 Jan; 417(3):982-5. PubMed ID: 22206668 [TBL] [Abstract][Full Text] [Related]
14. Explicit reformulations of time-dependent solution for a Michaelis-Menten enzyme reaction model. Golicnik M Anal Biochem; 2010 Nov; 406(1):94-6. PubMed ID: 20599638 [TBL] [Abstract][Full Text] [Related]
15. Quantitative analysis of the time courses of enzyme-catalyzed reactions. Duggleby RG Methods; 2001 Jun; 24(2):168-74. PubMed ID: 11384191 [TBL] [Abstract][Full Text] [Related]
16. Validity of quasi-steady-state and transfer-function representations for input-output relation in a Michaelis-Menten reaction. Sakamoto N Biotechnol Bioeng; 1986 Aug; 28(8):1191-9. PubMed ID: 18555445 [TBL] [Abstract][Full Text] [Related]
17. Quasi-steady-state laws in enzyme kinetics. Li B; Shen Y; Li B J Phys Chem A; 2008 Mar; 112(11):2311-21. PubMed ID: 18303867 [TBL] [Abstract][Full Text] [Related]
18. Enzymes are open systems. Zahradník FJ IUBMB Life; 2000 Apr; 49(4):255-7. PubMed ID: 10995025 [TBL] [Abstract][Full Text] [Related]
19. A steady state mathematical model for stepwise "slow-binding" reversible enzyme inhibition. Kuzmic P Anal Biochem; 2008 Sep; 380(1):5-12. PubMed ID: 18206642 [TBL] [Abstract][Full Text] [Related]
20. Modeling networks of coupled enzymatic reactions using the total quasi-steady state approximation. Ciliberto A; Capuani F; Tyson JJ PLoS Comput Biol; 2007 Mar; 3(3):e45. PubMed ID: 17367203 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]