BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 108249)

  • 1. Change from homo- to heterolactic fermentation by Streptococcus lactis resulting from glucose limitation in anaerobic chemostat cultures.
    Thomas TD; Ellwood DC; Longyear VM
    J Bacteriol; 1979 Apr; 138(1):109-17. PubMed ID: 108249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of lactate dehydrogenase and change of fermentation products in streptococci.
    Yamada T; Carlsson J
    J Bacteriol; 1975 Oct; 124(1):55-61. PubMed ID: 1176435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Galactose fermentation by Streptococcus lactis and Streptococcus cremoris: pathways, products, and regulation.
    Thomas TD; Turner KW; Crow VL
    J Bacteriol; 1980 Nov; 144(2):672-82. PubMed ID: 6776093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of pyruvate metabolism in Lactococcus lactis.
    Melchiorsen CR; Jensen NB; Christensen B; Vaever Jokumsen K; Villadsen J
    Biotechnol Bioeng; 2001 Aug; 74(4):271-9. PubMed ID: 11410851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of product formation during glucose or lactose limitation in nongrowing cells of Streptococcus lactis.
    Fordyce AM; Crow VL; Thomas TD
    Appl Environ Microbiol; 1984 Aug; 48(2):332-7. PubMed ID: 6435521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbohydrate Fermentation by Streptococcus cremoris and Streptococcus lactis Growing in Agar Gels.
    Thomas TD; Turner KW
    Appl Environ Microbiol; 1981 Jun; 41(6):1289-94. PubMed ID: 16345783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lactate dehydrogenase has no control on lactate production but has a strong negative control on formate production in Lactococcus lactis.
    Andersen HW; Pedersen MB; Hammer K; Jensen PR
    Eur J Biochem; 2001 Dec; 268(24):6379-89. PubMed ID: 11737192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic characterization of Lactococcus lactis deficient in lactate dehydrogenase using in vivo 13C-NMR.
    Neves AR; Ramos A; Shearman C; Gasson MJ; Almeida JS; Santos H
    Eur J Biochem; 2000 Jun; 267(12):3859-68. PubMed ID: 10849005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The pool of ADP and ATP regulates anaerobic product formation in resting cells of Lactococcus lactis.
    Palmfeldt J; Paese M; Hahn-Hägerdal B; Van Niel EW
    Appl Environ Microbiol; 2004 Sep; 70(9):5477-84. PubMed ID: 15345435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fermentation products and bacterial yields in glucose-limited and nitrogen-limited cultures of streptococci.
    Carlsson J; Griffith CJ
    Arch Oral Biol; 1974 Dec; 19(12):1105-9. PubMed ID: 4531871
    [No Abstract]   [Full Text] [Related]  

  • 11. Glucose metabolism and regulation of glycolysis in Lactococcus lactis strains with decreased lactate dehydrogenase activity.
    Garrigues C; Goupil-Feuillerat N; Cocaign-Bousquet M; Renault P; Lindley ND; Loubiere P
    Metab Eng; 2001 Jul; 3(3):211-7. PubMed ID: 11461143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Altered superoxide dismutase activity by carbohydrate utilization in a Lactococcus lactis strain.
    Kimoto-Nira H; Moriya N; Ohmori H; Suzuki C
    J Food Prot; 2014 Jul; 77(7):1161-7. PubMed ID: 24988023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of Lactococcus lactis growth and metabolite formation under aerobic and anaerobic conditions in the presence or absence of hemin.
    Lan CQ; Oddone G; Mills DA; Block DE
    Biotechnol Bioeng; 2006 Dec; 95(6):1070-80. PubMed ID: 16807924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of environmental pH on fermentation balance of Lactobacillus bulgaricus.
    Rhee SK; Pack MY
    J Bacteriol; 1980 Oct; 144(1):217-21. PubMed ID: 7419489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: predominant role of the NADH/NAD+ ratio.
    Garrigues C; Loubiere P; Lindley ND; Cocaign-Bousquet M
    J Bacteriol; 1997 Sep; 179(17):5282-7. PubMed ID: 9286977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Harnessing Adaptive Evolution to Achieve Superior Mannitol Production by
    Xiao H; Wang Q; Bang-Berthelsen CH; Jensen PR; Solem C
    J Agric Food Chem; 2020 Apr; 68(17):4912-4921. PubMed ID: 32233405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acetate utilization in Lactococcus lactis deficient in lactate dehydrogenase: a rescue pathway for maintaining redox balance.
    Hols P; Ramos A; Hugenholtz J; Delcour J; de Vos WM; Santos H; Kleerebezem M
    J Bacteriol; 1999 Sep; 181(17):5521-6. PubMed ID: 10464231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The level of pyruvate-formate lyase controls the shift from homolactic to mixed-acid product formation in Lactococcus lactis.
    Melchiorsen CR; Jokumsen KV; Villadsen J; Israelsen H; Arnau J
    Appl Microbiol Biotechnol; 2002 Mar; 58(3):338-44. PubMed ID: 11935185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterofermentative carbohydrate metabolism of lactose-impaired mutants of Streptococcus lactis.
    Demko GM; Blanton SJ; Benoit RE
    J Bacteriol; 1972 Dec; 112(3):1335-45. PubMed ID: 4629656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Twofold reduction of phosphofructokinase activity in Lactococcus lactis results in strong decreases in growth rate and in glycolytic flux.
    Andersen HW; Solem C; Hammer K; Jensen PR
    J Bacteriol; 2001 Jun; 183(11):3458-67. PubMed ID: 11344154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.