BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 10825152)

  • 1. Frequency-encoding Thr17 phospholamban phosphorylation is independent of Ser16 phosphorylation in cardiac myocytes.
    Hagemann D; Kuschel M; Kuramochi T; Zhu W; Cheng H; Xiao RP
    J Biol Chem; 2000 Jul; 275(29):22532-6. PubMed ID: 10825152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorylation of phospholamban promotes SERCA2a activation by dwarf open reading frame (DWORF).
    Bovo E; Jamrozik T; Kahn D; Karkut P; Robia SL; Zima AV
    Cell Calcium; 2024 Jul; 121():102910. PubMed ID: 38823350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppression of lusitropy as a disease mechanism in cardiomyopathies.
    Marston S; Pinto JR
    Front Cardiovasc Med; 2022; 9():1080965. PubMed ID: 36698941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrosylation of cardiac CaMKII at Cys290 mediates mechanical afterload-induced increases in Ca
    Alim CC; Ko CY; Mira Hernandez J; Shen EY; Baidar S; Chen-Izu Y; Bers DM; Bossuyt J
    J Physiol; 2022 Nov; 600(22):4865-4879. PubMed ID: 36227145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrophysiological Remodeling: Cardiac T-Tubules and ß-Adrenoceptors.
    Wright PT; Gorelik J; Harding SE
    Cells; 2021 Sep; 10(9):. PubMed ID: 34572106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computationally efficient model of myocardial electromechanics for multiscale simulations.
    Syomin F; Osepyan A; Tsaturyan A
    PLoS One; 2021; 16(7):e0255027. PubMed ID: 34293046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Mathematical Model of the Mouse Atrial Myocyte With Inter-Atrial Electrophysiological Heterogeneity.
    Zhang H; Zhang S; Wang W; Wang K; Shen W
    Front Physiol; 2020; 11():972. PubMed ID: 32848887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Female Heart Health: Is GPER the Missing Link?
    Groban L; Tran QK; Ferrario CM; Sun X; Cheng CP; Kitzman DW; Wang H; Lindsey SH
    Front Endocrinol (Lausanne); 2019; 10():919. PubMed ID: 31993020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of heart rate on cross-bridge cycling kinetics in failing and nonfailing human myocardium.
    Chung JH; Milani-Nejad N; Davis JP; Weisleder N; Whitson BA; Mohler PJ; Janssen PML
    Am J Physiol Heart Circ Physiol; 2019 Sep; 317(3):H640-H647. PubMed ID: 31347914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CaMKII-dependent phosphorylation regulates basal cardiac pacemaker function via modulation of local Ca2+ releases.
    Li Y; Sirenko S; Riordon DR; Yang D; Spurgeon H; Lakatta EG; Vinogradova TM
    Am J Physiol Heart Circ Physiol; 2016 Sep; 311(3):H532-44. PubMed ID: 27402669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The calcium-frequency response in the rat ventricular myocyte: an experimental and modelling study.
    Gattoni S; Røe ÅT; Frisk M; Louch WE; Niederer SA; Smith NP
    J Physiol; 2016 Aug; 594(15):4193-224. PubMed ID: 26916026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorylating Titin's Cardiac N2B Element by ERK2 or CaMKIIδ Lowers the Single Molecule and Cardiac Muscle Force.
    Perkin J; Slater R; Del Favero G; Lanzicher T; Hidalgo C; Anderson B; Smith JE; Sbaizero O; Labeit S; Granzier H
    Biophys J; 2015 Dec; 109(12):2592-2601. PubMed ID: 26682816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational analysis of the regulation of Ca(2+) dynamics in rat ventricular myocytes.
    Bugenhagen SM; Beard DA
    Phys Biol; 2015 Sep; 12(5):056008. PubMed ID: 26358004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CaMKII-dependent myofilament Ca2+ desensitization contributes to the frequency-dependent acceleration of relaxation.
    Guilbert A; Lim HJ; Cheng J; Wang Y
    Cell Calcium; 2015 Nov; 58(5):489-99. PubMed ID: 26297240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. miR-185 plays an anti-hypertrophic role in the heart via multiple targets in the calcium-signaling pathways.
    Kim JO; Song DW; Kwon EJ; Hong SE; Song HK; Min CK; Kim DH
    PLoS One; 2015; 10(3):e0122509. PubMed ID: 25767890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical Modeling Calcium and CaMKII Effects in the SA Node.
    Yaniv Y; Maltsev VA
    Front Pharmacol; 2014; 5():58. PubMed ID: 24744732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of CaMKII regulation of phospholamban activity in heart disease.
    Mattiazzi A; Kranias EG
    Front Pharmacol; 2014; 5():5. PubMed ID: 24550830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SERCA2a gene therapy in heart failure: an anti-arrhythmic positive inotrope.
    Sikkel MB; Hayward C; MacLeod KT; Harding SE; Lyon AR
    Br J Pharmacol; 2014 Jan; 171(1):38-54. PubMed ID: 24138023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ß-blocker timolol prevents arrhythmogenic Ca²⁺ release and normalizes Ca²⁺ and Zn²⁺ dyshomeostasis in hyperglycemic rat heart.
    Tuncay E; Okatan EN; Vassort G; Turan B
    PLoS One; 2013; 8(7):e71014. PubMed ID: 23923043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitric oxide regulates cardiac intracellular Na⁺ and Ca²⁺ by modulating Na/K ATPase via PKCε and phospholemman-dependent mechanism.
    Pavlovic D; Hall AR; Kennington EJ; Aughton K; Boguslavskyi A; Fuller W; Despa S; Bers DM; Shattock MJ
    J Mol Cell Cardiol; 2013 Aug; 61():164-71. PubMed ID: 23612119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.