These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 10825424)

  • 1. Solution structure of the loops of bacteriorhodopsin closely resembles the crystal structure.
    Katragadda M; Alderfer JL; Yeagle PL
    Biochim Biophys Acta; 2000 Jun; 1466(1-2):1-6. PubMed ID: 10825424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bicelle crystallization: a new method for crystallizing membrane proteins yields a monomeric bacteriorhodopsin structure.
    Faham S; Bowie JU
    J Mol Biol; 2002 Feb; 316(1):1-6. PubMed ID: 11829498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fourier transform infrared analysis of bacteriorhodopsin secondary structure.
    Cladera J; Sabés M; Padrós E
    Biochemistry; 1992 Dec; 31(49):12363-8. PubMed ID: 1463723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of the positioning of the seven transmembrane alpha-helices of bacteriorhodopsin. A molecular simulation study.
    Tuffery P; Etchebest C; Popot JL; Lavery R
    J Mol Biol; 1994 Mar; 236(4):1105-22. PubMed ID: 8120890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unfolding pathways of individual bacteriorhodopsins.
    Oesterhelt F; Oesterhelt D; Pfeiffer M; Engel A; Gaub HE; Müller DJ
    Science; 2000 Apr; 288(5463):143-6. PubMed ID: 10753119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Residue-specific millisecond to microsecond fluctuations in bacteriorhodopsin induced by disrupted or disorganized two-dimensional crystalline lattice, through modified lipid-helix and helix-helix interactions, as revealed by 13C NMR.
    Saitô H; Tsuchida T; Ogawa K; Arakawa T; Yamaguchi S; Tuzi S
    Biochim Biophys Acta; 2002 Sep; 1565(1):97-106. PubMed ID: 12225857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstitution of bacteriorhodopsin from a mixture of a proteinase V8 fragment and two synthetic peptides.
    Ozawa S; Hayashi R; Masuda A; Iio T; Takahashi S
    Biochim Biophys Acta; 1997 Jan; 1323(1):145-53. PubMed ID: 9030221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface dynamics of bacteriorhodopsin as revealed by (13)C NMR studies on [(13)C]Ala-labeled proteins: detection of millisecond or microsecond motions in interhelical loops and C-terminal alpha-helix.
    Yamaguchi S; Tuzi S; Yonebayashi K; Naito A; Needleman R; Lanyi JK; Saitô H
    J Biochem; 2001 Mar; 129(3):373-82. PubMed ID: 11226876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and function in bacteriorhodopsin: the role of the interhelical loops in the folding and stability of bacteriorhodopsin.
    Kim JM; Booth PJ; Allen SJ; Khorana HG
    J Mol Biol; 2001 Apr; 308(2):409-22. PubMed ID: 11327776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proline residues in transmembrane alpha helices affect the folding of bacteriorhodopsin.
    Lu H; Marti T; Booth PJ
    J Mol Biol; 2001 Apr; 308(2):437-46. PubMed ID: 11327778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 1H-15N-NMR studies of bacteriorhodopsin Halobacterium halobium. Conformational dynamics of the four-helical bundle.
    Orekhov VYu ; Abdulaeva GV; Musina LYu ; Arseniev AS
    Eur J Biochem; 1992 Nov; 210(1):223-9. PubMed ID: 1332860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural role of bacterioruberin in the trimeric structure of archaerhodopsin-2.
    Yoshimura K; Kouyama T
    J Mol Biol; 2008 Feb; 375(5):1267-81. PubMed ID: 18082767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics simulation of the unfolding of individual bacteriorhodopsin helices in sodium dodecyl sulfate micelles.
    Krishnamani V; Lanyi JK
    Biochemistry; 2012 Feb; 51(6):1061-9. PubMed ID: 22304411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The secondary structure of bacteriorhodopsin in organic solution. A Fourier transform infrared study.
    Torres J; Padrós E
    FEBS Lett; 1993 Feb; 318(1):77-9. PubMed ID: 8436230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. It's not just a phase: crystallization and X-ray structure determination of bacteriorhodopsin in lipidic cubic phases.
    Gouaux E
    Structure; 1998 Jan; 6(1):5-10. PubMed ID: 9493262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing origins of molecular interactions stabilizing the membrane proteins halorhodopsin and bacteriorhodopsin.
    Cisneros DA; Oesterhelt D; Müller DJ
    Structure; 2005 Feb; 13(2):235-42. PubMed ID: 15698567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [2D-1H-NMR-study of the conformation of transmembrane segments of C, E, and G bacteriorhodopsin].
    MaslennikovIV ; Arsen'ev AS; Chikin LD; Kozhich AT; Ivanov VT
    Bioorg Khim; 1993 Jan; 19(1):5-20. PubMed ID: 8484814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the energy landscape of the membrane protein bacteriorhodopsin.
    Janovjak H; Struckmeier J; Hubain M; Kedrov A; Kessler M; Müller DJ
    Structure; 2004 May; 12(5):871-9. PubMed ID: 15130479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformation and dynamics changes of bacteriorhodopsin and its D85N mutant in the absence of 2D crystalline lattice as revealed by site-directed 13C NMR.
    Yamamoto K; Tuzi S; Saitô H; Kawamura I; Naito A
    Biochim Biophys Acta; 2006 Feb; 1758(2):181-9. PubMed ID: 16542636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct observation of different surface structures on high-resolution images of native halorhodopsin.
    Persike N; Pfeiffer M; Guckenberger R; Radmacher M; Fritz M
    J Mol Biol; 2001 Jul; 310(4):773-80. PubMed ID: 11453686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.