BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 10825475)

  • 1. Neurotrophin-receptor immunoreactive neurons in mesopontine regions involved in the control of behavioral states.
    Yamuy J; Sampogna S; Chase MH
    Brain Res; 2000 Jun; 866(1-2):1-14. PubMed ID: 10825475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of tropomyosin-related kinase receptors in neurotrophin-induced rapid eye movement sleep in the cat.
    Yamuy J; Ramos O; Torterolo P; Sampogna S; Chase MH
    Neuroscience; 2005; 135(2):357-69. PubMed ID: 16125858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induction of rapid eye movement sleep by neurotrophin-3 and its co-localization with choline acetyltransferase in mesopontine neurons.
    Yamuy J; Rojas MJ; Torterolo P; Sampogna S; Chase MH
    Neuroscience; 2002; 115(1):85-95. PubMed ID: 12401324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aminergic and cholinergic afferents to REM sleep induction regions of the pontine reticular formation in the rat.
    Semba K
    J Comp Neurol; 1993 Apr; 330(4):543-56. PubMed ID: 7686567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel role of pedunculopontine tegmental kainate receptors: a mechanism of rapid eye movement sleep generation in the rat.
    Datta S; Spoley EE; Mavanji VK; Patterson EH
    Neuroscience; 2002; 114(1):157-64. PubMed ID: 12207962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GABAergic mechanisms in the pedunculopontine tegmental nucleus of the cat promote active (REM) sleep.
    Torterolo P; Morales FR; Chase MH
    Brain Res; 2002 Jul; 944(1-2):1-9. PubMed ID: 12106660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of cholinergic and non-cholinergic neurons in the pons expressing phosphorylated cyclic adenosine monophosphate response element-binding protein as a function of rapid eye movement sleep.
    Datta S; Siwek DF; Stack EC
    Neuroscience; 2009 Sep; 163(1):397-414. PubMed ID: 19540313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cholinergic and non-cholinergic afferents of the caudolateral parabrachial nucleus: a role in the long-term enhancement of rapid eye movement sleep.
    Quattrochi J; Datta S; Hobson JA
    Neuroscience; 1998 Apr; 83(4):1123-36. PubMed ID: 9502251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Serotonergic connections to the ventral oral pontine reticular nucleus: implication in paradoxical sleep modulation.
    Rodrigo-Angulo ML; Rodriguez-Veiga E; Reinoso-Suárez F
    J Comp Neurol; 2000 Feb; 418(1):93-105. PubMed ID: 10701758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induction of rapid eye movement sleep by the microinjection of nerve growth factor into the pontine reticular formation of the cat.
    Yamuy J; Morales FR; Chase MH
    Neuroscience; 1995 May; 66(1):9-13. PubMed ID: 7637879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. c-fos Expression in mesopontine noradrenergic and cholinergic neurons of the cat during carbachol-induced active sleep: a double-labeling study.
    Yamuy J; Sampogna S; Morales FR; Chase MH
    Sleep Res Online; 1998; 1(1):28-40. PubMed ID: 11382855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of nerve growth factor, p75, and the high affinity neurotrophin receptors in the adult rat trigeminal system: evidence for multiple trophic support systems.
    Jacobs JS; Miller MW
    J Neurocytol; 1999 Jul; 28(7):571-95. PubMed ID: 10800206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of mesopontine NGF in sleep and wakefulness.
    Ramos OV; Torterolo P; Lim V; Chase MH; Sampogna S; Yamuy J
    Brain Res; 2011 Sep; 1413():9-23. PubMed ID: 21840513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Muscarinic-2 and orexin-2 receptors on GABAergic and other neurons in the rat mesopontine tegmentum and their potential role in sleep-wake state control.
    Brischoux F; Mainville L; Jones BE
    J Comp Neurol; 2008 Oct; 510(6):607-30. PubMed ID: 18709662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. trkA, trkB, and trkC messenger RNA expression by bulbospinal cells of the rat.
    King VR; Michael GJ; Joshi RK; Priestley JV
    Neuroscience; 1999; 92(3):935-44. PubMed ID: 10426534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrical stimulation of the cholinergic laterodorsal tegmental nucleus elicits scopolamine-sensitive excitatory postsynaptic potentials in medial pontine reticular formation neurons.
    Imon H; Ito K; Dauphin L; McCarley RW
    Neuroscience; 1996 Sep; 74(2):393-401. PubMed ID: 8865191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbachol models of REM sleep: recent developments and new directions.
    Kubin L
    Arch Ital Biol; 2001 Feb; 139(1-2):147-68. PubMed ID: 11256182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pontine regulation of REM sleep components in cats: integrity of the pedunculopontine tegmentum (PPT) is important for phasic events but unnecessary for atonia during REM sleep.
    Shouse MN; Siegel JM
    Brain Res; 1992 Jan; 571(1):50-63. PubMed ID: 1611494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sleep-wakefulness effects after microinjections of hypocretin 1 (orexin A) in cholinoceptive areas of the cat oral pontine tegmentum.
    Moreno-Balandrán E; Garzón M; Bódalo C; Reinoso-Suárez F; de Andrés I
    Eur J Neurosci; 2008 Jul; 28(2):331-41. PubMed ID: 18702704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GABAA receptors inhibit acetylcholine release in cat pontine reticular formation: implications for REM sleep regulation.
    Vazquez J; Baghdoyan HA
    J Neurophysiol; 2004 Oct; 92(4):2198-206. PubMed ID: 15212422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.