BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 10825509)

  • 21. Neurofilament subunits undergo more rapid translocation within retinas than in optic axons.
    Jung C; Shea TB
    Brain Res Mol Brain Res; 2004 Mar; 122(2):188-92. PubMed ID: 15010211
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of neurofilament transport in the radial growth of myelinated axons.
    Nowier RM; Friedman A; Brown A; Jung P
    Mol Biol Cell; 2023 May; 34(6):ar58. PubMed ID: 36811626
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Increasing neurofilament subunit NF-M expression reduces axonal NF-H, inhibits radial growth, and results in neurofilamentous accumulation in motor neurons.
    Wong PC; Marszalek J; Crawford TO; Xu Z; Hsieh ST; Griffin JW; Cleveland DW
    J Cell Biol; 1995 Sep; 130(6):1413-22. PubMed ID: 7559762
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Changes in neurofilament transport coincide temporally with alterations in the caliber of axons in regenerating motor fibers.
    Hoffman PN; Thompson GW; Griffin JW; Price DL
    J Cell Biol; 1985 Oct; 101(4):1332-40. PubMed ID: 2413041
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neurofilament high molecular weight-green fluorescent protein fusion is normally expressed in neurons and transported in axons: a neuronal marker to investigate the biology of neurofilaments.
    Letournel F; Bocquet A; Perrot R; Dechaume A; Guinut F; Eyer J; Barthelaix A
    Neuroscience; 2006; 137(1):103-11. PubMed ID: 16289584
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Control of axonal caliber by neurofilament transport.
    Hoffman PN; Griffin JW; Price DL
    J Cell Biol; 1984 Aug; 99(2):705-14. PubMed ID: 6204997
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Extra axonal neurofilaments do not exacerbate disease caused by mutant Cu,Zn superoxide dismutase.
    Couillard-Després S; Meier J; Julien JP
    Neurobiol Dis; 2000 Aug; 7(4):462-70. PubMed ID: 10964615
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neurofilament phosphorylation regulates axonal transport by an indirect mechanism: a merging of opposing hypotheses.
    Shea TB; Lee S
    Cytoskeleton (Hoboken); 2011 Nov; 68(11):589-95. PubMed ID: 21990272
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Visualization of slow axonal transport in vivo.
    Terada S; Nakata T; Peterson AC; Hirokawa N
    Science; 1996 Aug; 273(5276):784-8. PubMed ID: 8670416
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Alterations in slow transport kinetics induced by estramustine phosphate, an agent binding to microtubule-associated proteins.
    Sahenk Z; Mendell JR
    J Neurosci Res; 1992 Aug; 32(4):481-93. PubMed ID: 1382136
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [32P]orthophosphate and [35S]methionine label separate pools of neurofilaments with markedly different axonal transport kinetics in mouse retinal ganglion cells in vivo.
    Nixon RA; Lewis SE; Mercken M; Sihag RK
    Neurochem Res; 1994 Nov; 19(11):1445-53. PubMed ID: 7534878
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Abnormal neurofilament transport caused by targeted disruption of neuronal kinesin heavy chain KIF5A.
    Xia CH; Roberts EA; Her LS; Liu X; Williams DS; Cleveland DW; Goldstein LS
    J Cell Biol; 2003 Apr; 161(1):55-66. PubMed ID: 12682084
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Extra neurofilament NF-L subunits rescue motor neuron disease caused by overexpression of the human NF-H gene in mice.
    Meier J; Couillard-Després S; Jacomy H; Gravel C; Julien JP
    J Neuropathol Exp Neurol; 1999 Oct; 58(10):1099-110. PubMed ID: 10515233
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Axonal transport of neurofilaments: a single population of intermittently moving polymers.
    Li Y; Jung P; Brown A
    J Neurosci; 2012 Jan; 32(2):746-58. PubMed ID: 22238110
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Disruption of type IV intermediate filament network in mice lacking the neurofilament medium and heavy subunits.
    Jacomy H; Zhu Q; Couillard-Després S; Beaulieu JM; Julien JP
    J Neurochem; 1999 Sep; 73(3):972-84. PubMed ID: 10461886
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rapid intermittent movement of axonal neurofilaments observed by fluorescence photobleaching.
    Wang L; Brown A
    Mol Biol Cell; 2001 Oct; 12(10):3257-67. PubMed ID: 11598207
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The C-terminal domains of NF-H and NF-M subunits maintain axonal neurofilament content by blocking turnover of the stationary neurofilament network.
    Rao MV; Yuan A; Campbell J; Kumar A; Nixon RA
    PLoS One; 2012; 7(9):e44320. PubMed ID: 23028520
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neurofilament transport in vivo minimally requires hetero-oligomer formation.
    Yuan A; Rao MV; Kumar A; Julien JP; Nixon RA
    J Neurosci; 2003 Oct; 23(28):9452-8. PubMed ID: 14561875
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Absence of the mid-sized neurofilament subunit decreases axonal calibers, levels of light neurofilament (NF-L), and neurofilament content.
    Elder GA; Friedrich VL; Bosco P; Kang C; Gourov A; Tu PH; Lee VM; Lazzarini RA
    J Cell Biol; 1998 May; 141(3):727-39. PubMed ID: 9566972
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Age-related atrophy of motor axons in mice deficient in the mid-sized neurofilament subunit.
    Elder GA; Friedrich VL; Margita A; Lazzarini RA
    J Cell Biol; 1999 Jul; 146(1):181-92. PubMed ID: 10402469
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.