These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 10825548)
1. A biodegradable multiblock co-polymer derived from an alpha, omega-bis(methylamino)peptide and an alpha, omega-bis(oxiranylmethyl)poly(ethylene glycol). Matthews1 SE; Pouton CW; Threadgill MD J Control Release; 2000 Jul; 67(2-3):129-39. PubMed ID: 10825548 [TBL] [Abstract][Full Text] [Related]
2. Lysosomally cleavable peptide-containing polymersomes modified with anti-EGFR antibody for systemic cancer chemotherapy. Lee JS; Groothuis T; Cusan C; Mink D; Feijen J Biomaterials; 2011 Dec; 32(34):9144-53. PubMed ID: 21872328 [TBL] [Abstract][Full Text] [Related]
3. Synthesis of Degradable Poly[(Ethylene Glycol)-co-(Glycolic Acid)] via the Post-Polymerization Oxyfunctionalization of Poly(Ethylene Glycol). Liu D; Bielawski CW Macromol Rapid Commun; 2016 Oct; 37(19):1587-1592. PubMed ID: 27461401 [TBL] [Abstract][Full Text] [Related]
4. A new injectable thermogelling material: methoxy poly(ethylene glycol)-poly(sebacic acid-D,L-lactic acid)-methoxy poly(ethylene glycol) triblock co-polymer. Zhai Y; Deng L; Xing J; Liu Y; Zhang Q; Dong A J Biomater Sci Polym Ed; 2009; 20(7-8):923-34. PubMed ID: 19454160 [TBL] [Abstract][Full Text] [Related]
5. Biodegradable and thermoreversible hydrogels of poly(ethylene glycol)-poly(epsilon-caprolactone-co-glycolide)-poly(ethylene glycol) aqueous solutions. Jiang Z; Hao J; You Y; Liu Y; Wang Z; Deng X J Biomed Mater Res A; 2008 Oct; 87(1):45-51. PubMed ID: 18080306 [TBL] [Abstract][Full Text] [Related]
6. Synthesis and characterization of six-arm star poly(delta-valerolactone)-block-methoxy poly(ethylene glycol) copolymers. Zeng F; Lee H; Chidiac M; Allen C Biomacromolecules; 2005; 6(4):2140-9. PubMed ID: 16004456 [TBL] [Abstract][Full Text] [Related]
7. Hydrolytically and reductively degradable carriers of biologically active molecules based on multiblock polymers of poly(ethylene glycol). Pechar M; Braunová A; Ulbrich K; Jelínková M; Øíhová B; Seymour L J Control Release; 2006 Nov; 116(2):e8-10. PubMed ID: 17718984 [No Abstract] [Full Text] [Related]
8. Preparation of biodegradable polycaprolactone/poly (ethylene glycol)/polycaprolactone (PCEC) nanoparticles. Jia W; Gu Y; Gou M; Dai M; Li X; Kan B; Yang J; Song Q; Wei Y; Qian Z Drug Deliv; 2008 Sep; 15(7):409-16. PubMed ID: 18712617 [TBL] [Abstract][Full Text] [Related]
9. Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review. Hadinoto K; Sundaresan A; Cheow WS Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt A):427-43. PubMed ID: 23872180 [TBL] [Abstract][Full Text] [Related]
10. Synthesis of degradable functional poly(ethylene glycol) analogs as versatile drug delivery carriers. Wang N; Dong A; Tang H; Van Kirk EA; Johnson PA; Murdoch WJ; Radosz M; Shen Y Macromol Biosci; 2007 Nov; 7(11):1187-98. PubMed ID: 17665412 [TBL] [Abstract][Full Text] [Related]
11. N-heterocyclic carbene-induced zwitterionic ring-opening polymerization of ethylene oxide and direct synthesis of alpha,omega-difunctionalized poly(ethylene oxide)s and poly(ethylene oxide)-b-poly(epsilon-caprolactone) block copolymers. Raynaud J; Absalon C; Gnanou Y; Taton D J Am Chem Soc; 2009 Mar; 131(9):3201-9. PubMed ID: 19209910 [TBL] [Abstract][Full Text] [Related]
13. Heterobifunctional poly(ethylene oxide): synthesis of alpha-methoxy-omega-amino and alpha-hydroxy-omega-amino PEOs with the same molecular weights. Cammas S; Nagasaki Y; Kataoka K Bioconjug Chem; 1995; 6(2):226-30. PubMed ID: 7599266 [TBL] [Abstract][Full Text] [Related]
14. Synthesis, characterization and biocompatibility of biodegradable elastomeric poly(ether-ester urethane)s Based on Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and Poly(ethylene glycol) via melting polymerization. Li Z; Yang X; Wu L; Chen Z; Lin Y; Xu K; Chen GQ J Biomater Sci Polym Ed; 2009; 20(9):1179-202. PubMed ID: 19520007 [TBL] [Abstract][Full Text] [Related]
15. Synthesis and properties of novel block copolymers containing poly(lactic-glycolic acid) and poly(ethyleneglycol) segments. Ferruti P; Penco M; D'Addato P; Ranucci E; Deghenghi R Biomaterials; 1995 Dec; 16(18):1423-8. PubMed ID: 8590770 [TBL] [Abstract][Full Text] [Related]
16. Biodegradable hydrophilic carriers for the oral delivery of hematological factor IX for hemophilia B treatment. Horava SD; Moy KJ; Peppas NA Int J Pharm; 2016 Nov; 514(1):220-228. PubMed ID: 27863665 [TBL] [Abstract][Full Text] [Related]
17. Biodegradable poly(D,L-lactic acid)-poly(ethylene glycol)-monomethyl ether diblock copolymers: structures and surface properties relevant to their use as biomaterials. Lucke A; Tessmar J; Schnell E; Schmeer G; Göpferich A Biomaterials; 2000 Dec; 21(23):2361-70. PubMed ID: 11055283 [TBL] [Abstract][Full Text] [Related]
18. PEG-PLA block copolymer as potential drug carrier: preparation and characterization. Ben-Shabat S; Kumar N; Domb AJ Macromol Biosci; 2006 Dec; 6(12):1019-25. PubMed ID: 17128420 [TBL] [Abstract][Full Text] [Related]
19. Characterization of the thermo- and pH-responsive assembly of triblock copolymers based on poly(ethylene glycol) and functionalized poly(ε-caprolactone). Safaei Nikouei N; Lavasanifar A Acta Biomater; 2011 Oct; 7(10):3708-18. PubMed ID: 21672641 [TBL] [Abstract][Full Text] [Related]
20. The degradation and biocompatibility of pH-sensitive biodegradable polyurethanes for intracellular multifunctional antitumor drug delivery. Zhou L; Liang D; He X; Li J; Tan H; Li J; Fu Q; Gu Q Biomaterials; 2012 Mar; 33(9):2734-45. PubMed ID: 22236829 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]