These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 10825745)

  • 1. Is pathogenic humoral autoimmunity a Th1 response?
    Saoudi A; Guery JC; De Baets M
    Immunol Today; 2000 Jun; 21(6):306-7. PubMed ID: 10825745
    [No Abstract]   [Full Text] [Related]  

  • 2. Is pathogenic humoral autoimmunity a Th1 response? Lessons from (for) myasthenia gravis.
    Balasa B; Sarvetnick N
    Immunol Today; 2000 Jan; 21(1):19-23. PubMed ID: 10637554
    [No Abstract]   [Full Text] [Related]  

  • 3. The limitation of IL-10-exposed dendritic cells in the treatment of experimental autoimmune myasthenia gravis and myasthenia gravis.
    Xiao BG; Duan RS; Zhu WH; Lu CZ
    Cell Immunol; 2006 Jun; 241(2):95-101. PubMed ID: 17005165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autoimmune mechanisms in myasthenia gravis.
    Cavalcante P; Bernasconi P; Mantegazza R
    Curr Opin Neurol; 2012 Oct; 25(5):621-9. PubMed ID: 22941261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The susceptibility to experimental myasthenia gravis of STAT6-/- and STAT4-/- BALB/c mice suggests a pathogenic role of Th1 cells.
    Wang W; Ostlie NS; Conti-Fine BM; Milani M
    J Immunol; 2004 Jan; 172(1):97-103. PubMed ID: 14688314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. C57BL/6 mice genetically deficient in IL-12/IL-23 and IFN-gamma are susceptible to experimental autoimmune myasthenia gravis, suggesting a pathogenic role of non-Th1 cells.
    Wang W; Milani M; Ostlie N; Okita D; Agarwal RK; Caspi RR; Conti-Fine BM
    J Immunol; 2007 Jun; 178(11):7072-80. PubMed ID: 17513756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Depletion of CD8+ T cells suppresses the development of experimental autoimmune myasthenia gravis in Lewis rats.
    Zhang GX; Ma CG; Xiao BG; Bakhiet M; Link H; Olsson T
    Eur J Immunol; 1995 May; 25(5):1191-8. PubMed ID: 7774622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Paradoxical roles of IFN-gamma in models of Th1-mediated autoimmunity.
    Rosloniec EF; Latham K; Guedez YB
    Arthritis Res; 2002; 4(6):333-6. PubMed ID: 12453308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blockade of CD40 ligand suppresses chronic experimental myasthenia gravis by down-regulation of Th1 differentiation and up-regulation of CTLA-4.
    Im SH; Barchan D; Maiti PK; Fuchs S; Souroujon MC
    J Immunol; 2001 Jun; 166(11):6893-8. PubMed ID: 11359850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IFNA-AS1 regulates CD4
    Luo M; Liu X; Meng H; Xu L; Li Y; Li Z; Liu C; Luo YB; Hu B; Xue Y; Liu Y; Luo Z; Yang H
    Clin Immunol; 2017 Oct; 183():121-131. PubMed ID: 28822831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predictive value of serum anti-C1q antibody levels in experimental autoimmune myasthenia gravis.
    Tüzün E; Saini SS; Ghosh S; Rowin J; Meriggioli MN; Christadoss P
    Neuromuscul Disord; 2006 Feb; 16(2):137-43. PubMed ID: 16427283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. B cell autoimmunity to acetylcholine receptor and its subunits in Lewis rats over the course of experimental autoimmune myasthenia gravis.
    Wang ZY; Link H; Qiao J; Olsson T; Huang WX
    J Neuroimmunol; 1993 Jun; 45(1-2):103-12. PubMed ID: 8331155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suppression of experimental myasthenia gravis by a B-cell epitope-free recombinant acetylcholine receptor.
    Yi HJ; Chae CS; So JS; Tzartos SJ; Souroujon MC; Fuchs S; Im SH
    Mol Immunol; 2008 Nov; 46(1):192-201. PubMed ID: 18799218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overexpression of IFN-induced protein 10 and its receptor CXCR3 in myasthenia gravis.
    Feferman T; Maiti PK; Berrih-Aknin S; Bismuth J; Bidault J; Fuchs S; Souroujon MC
    J Immunol; 2005 May; 174(9):5324-31. PubMed ID: 15843529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interleukin-12 enhances clinical experimental autoimmune myasthenia gravis in susceptible but not resistant mice.
    Sitaraman S; Metzger DW; Belloto RJ; Infante AJ; Wall KA
    J Neuroimmunol; 2000 Jul; 107(1):73-82. PubMed ID: 10808053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interferon gamma (IFN-gamma) is necessary for the genesis of acetylcholine receptor-induced clinical experimental autoimmune myasthenia gravis in mice.
    Balasa B; Deng C; Lee J; Bradley LM; Dalton DK; Christadoss P; Sarvetnick N
    J Exp Med; 1997 Aug; 186(3):385-91. PubMed ID: 9236190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Myasthenia gravis, autoimmunity and the thymus.
    Strauss AJ
    Adv Intern Med; 1968; 14():241-80. PubMed ID: 4178674
    [No Abstract]   [Full Text] [Related]  

  • 18. Polarization toward the T-helper(Th)1 type immune response is not required for rat experimental autoimmune myasthenia gravis.
    Saoudi A; Bernard I; Hoedemaekers A; Cautain B; Martinez K; Druet P; De Baets M; Guéry JC
    Transplant Proc; 1999 May; 31(3):1604-5. PubMed ID: 10331019
    [No Abstract]   [Full Text] [Related]  

  • 19. Exogenous IL-9 Ameliorates Experimental Autoimmune Myasthenia Gravis Symptoms in Rats.
    Yao X; Zhao J; Kong Q; Xie X; Wang J; Sun B; Xu L; Mu L; Li H
    Immunol Invest; 2018 Oct; 47(7):712-724. PubMed ID: 29944018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pathogenic immune mechanisms at the neuromuscular synapse: the role of specific antibody-binding epitopes in myasthenia gravis.
    Huijbers MG; Lipka AF; Plomp JJ; Niks EH; van der Maarel SM; Verschuuren JJ
    J Intern Med; 2014 Jan; 275(1):12-26. PubMed ID: 24215230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.