These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 10826686)

  • 1. In-line coupling capillary electrochromatography with amperometric detection for analysis of explosive compounds.
    Hilmi A; Luong JH
    Electrophoresis; 2000 Apr; 21(7):1395-404. PubMed ID: 10826686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-line coupling of pressurized capillary electrochromatography with end-column amperometric detection for analysis of estrogens.
    Liu S; Wu X; Xie Z; Lin X; Guo L; Yan C; Chen G
    Electrophoresis; 2005 Jun; 26(12):2342-50. PubMed ID: 15920782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of explosives in soil and ground water by liquid chromatography-amperometric detection.
    Hilmi A; Luong JH; Nguyen AL
    J Chromatogr A; 1999 Jun; 844(1-2):97-110. PubMed ID: 10399326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micellar electrokinetic chromatography and capillary electrochromatography of nitroaromatic explosives in seawater.
    Giordano BC; Copper CL; Collins GE
    Electrophoresis; 2006 Feb; 27(4):778-86. PubMed ID: 16470625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Indirect laser-induced fluorescence detection of explosive compounds using capillary electrochromatography and micellar electrokinetic chromatography.
    Bailey CG; Wallenborg SR
    Electrophoresis; 2000 Sep; 21(15):3081-7. PubMed ID: 11001203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of the separation of organic explosives by capillary electrophoresis with artificial neural networks.
    Casamento S; Kwok B; Roux C; Dawson M; Doble P
    J Forensic Sci; 2003 Sep; 48(5):1075-83. PubMed ID: 14535670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Screening of post-explosive samples for common high explosive components by MECC.
    Hamels S; De Bisschop HC
    Biomed Chromatogr; 1998; 12(3):107-8. PubMed ID: 9646900
    [No Abstract]   [Full Text] [Related]  

  • 8. Evaluation of bioremediation methods for the treatment of soil contaminated with explosives in Louisiana Army Ammunition Plant, Minden, Louisiana.
    Clark B; Boopathy R
    J Hazard Mater; 2007 May; 143(3):643-8. PubMed ID: 17289260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of explosives and their degradation products in soil environments.
    Halasz A; Groom C; Zhou E; Paquet L; Beaulieu C; Deschamps S; Corriveau A; Thiboutot S; Ampleman G; Dubois C; Hawari J
    J Chromatogr A; 2002 Jul; 963(1-2):411-8. PubMed ID: 12187997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of photoassisted electrochemical detection to explosive-containing environmental samples.
    Marple RL; LaCourse WR
    Anal Chem; 2005 Oct; 77(20):6709-14. PubMed ID: 16223260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chlorinated phenol analysis using off-line solid-phase extraction and capillary electrophoresis coupled with amperometric detection and a boron-doped diamond microelectrode.
    Muna GW; Quaiserová-Mocko V; Swain GM
    Anal Chem; 2005 Oct; 77(20):6542-8. PubMed ID: 16223238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence quenching as an indirect detection method for nitrated explosives.
    Goodpaster JV; McGuffin VL
    Anal Chem; 2001 May; 73(9):2004-11. PubMed ID: 11354482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of selected withanolides in plant extract by capillary electrochromatography and microemulsion electrokinetic chromatography.
    Cherkaoui S; Cahours X; Veuthey JL
    Electrophoresis; 2003 Jan; 24(3):336-42. PubMed ID: 12569525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of nitroaromatic explosives residue at military shooting ranges using a sweeping-MEKC method.
    Yang YY; Liu JT; Lin CH
    Electrophoresis; 2009 Mar; 30(6):1084-7. PubMed ID: 19229840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The determination of nitroaromatics and nitramines in ground and drinking water by wide-bore capillary gas chromatography.
    Hable M; Stern C; Asowata C; Williams K
    J Chromatogr Sci; 1991 Apr; 29(4):131-5. PubMed ID: 1874908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of hydrazine, monomethylhydrazine, 1,1-dimethylhydrazine, and 1,2-dimethylhydrazine by nonaqueous capillary electrophoresis with amperometric detection.
    Guo L; Matysik FM; Gläser P; Engewald W
    Electrophoresis; 2005 Sep; 26(17):3341-8. PubMed ID: 16097027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microemulsion electrokinetic chromatography versus capillary electrochromatography-UV-mass spectrometry for the analysis of flunitrazepam and its major metabolites.
    Cahours X; Cherkaoui S; Rozing G; Veuthey JL
    Electrophoresis; 2002 Jul; 23(14):2320-6. PubMed ID: 12210238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pressurized capillary electrochromatography with indirect amperometric detection for analysis of organophosphorus pesticide residues.
    Wu W; Wu Y; Zheng M; Yang L; Wu X; Lin X; Xie Z
    Analyst; 2010 Aug; 135(8):2150-6. PubMed ID: 20589268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of nitramine and nitroaromatic explosives in pink water by capillary electrophoresis.
    Oehrle SA
    Electrophoresis; 1997 Feb; 18(2):300-2. PubMed ID: 9080141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trace explosive detection in aqueous samples by solid-phase extraction ion mobility spectrometry (SPE-IMS).
    Buxton TL; Harrington Pde B
    Appl Spectrosc; 2003 Feb; 57(2):223-32. PubMed ID: 14610961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.