These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 10826735)

  • 1. Computer simulation of sensorless fuzzy control of a rotary blood pump to assure normal physiology.
    Fu M; Xu L
    ASAIO J; 2000; 46(3):273-8. PubMed ID: 10826735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiologic control algorithms for rotary blood pumps using pressure sensor input.
    Bullister E; Reich S; Sluetz J
    Artif Organs; 2002 Nov; 26(11):931-8. PubMed ID: 12406146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A control system for rotary blood pumps based on suction detection.
    Ferreira A; Boston JR; Antaki JF
    IEEE Trans Biomed Eng; 2009 Mar; 56(3):656-65. PubMed ID: 19272919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer modeling of interactions of an electric motor, circulatory system, and rotary blood pump.
    Xu L; Fu M
    ASAIO J; 2000; 46(5):604-11. PubMed ID: 11016517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a reliable automatic speed control system for rotary blood pumps.
    Vollkron M; Schima H; Huber L; Benkowski R; Morello G; Wieselthaler G
    J Heart Lung Transplant; 2005 Nov; 24(11):1878-85. PubMed ID: 16297795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A sliding mode-based starling-like controller for implantable rotary blood pumps.
    Bakouri MA; Salamonsen RF; Savkin AV; AlOmari AH; Lim E; Lovell NH
    Artif Organs; 2014 Jul; 38(7):587-93. PubMed ID: 24274084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suction prevention and physiologic control of continuous flow left ventricular assist devices using intrinsic pump parameters.
    Wang Y; Koenig SC; Slaughter MS; Giridharan GA
    ASAIO J; 2015; 61(2):170-7. PubMed ID: 25396276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological control of intraaorta pump based on heart rate.
    Gao B; Nie LY; Chang Y; Zeng Y
    ASAIO J; 2011; 57(3):152-7. PubMed ID: 21307771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of a rotary pulsatile cardiac assist pump driven by an electric motor without a pressure sensor to avoid collapse of the pump inlet.
    Trinkl J; Havlik P; Mesana T; Mitsui N; Morita S; Demunck JL; Tourres JL; Monties JR
    ASAIO J; 1993; 39(3):M237-41. PubMed ID: 8268535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Study on sensorless suction detection method based on the intrinsic parameter of rotary left ventricular assist devices].
    Peng J; Wang Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Jun; 36(3):478-485. PubMed ID: 31232552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pulse-pressure-enhancing controller for better physiologic perfusion of rotary blood pumps based on speed modulation.
    Huang F; Ruan X; Fu X
    ASAIO J; 2014; 60(3):269-79. PubMed ID: 24614360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Minimal sensor count approach to fuzzy logic rotary blood pump flow control.
    Casas F; Ahmed N; Reeves A
    ASAIO J; 2007; 53(2):140-6. PubMed ID: 17413551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anatomy and Physiology of Left Ventricular Suction Induced by Rotary Blood Pumps.
    Salamonsen RF; Lim E; Moloney J; Lovell NH; Rosenfeldt FL
    Artif Organs; 2015 Aug; 39(8):681-90. PubMed ID: 26146861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new technique to control brushless motor for blood pump application.
    Fonseca J; Andrade A; Nicolosi DE; Biscegli JF; Legendre D; Bock E; Lucchi JC
    Artif Organs; 2008 Apr; 32(4):355-9. PubMed ID: 18370953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hemodynamic response to exercise and head-up tilt of patients implanted with a rotary blood pump: a computational modeling study.
    Lim E; Salamonsen RF; Mansouri M; Gaddum N; Mason DG; Timms DL; Stevens MC; Fraser J; Akmeliawati R; Lovell NH
    Artif Organs; 2015 Feb; 39(2):E24-35. PubMed ID: 25345482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impeller-pump model derived from conservation laws applied to the simulation of the cardiovascular system coupled to heart-assist pumps.
    Shi Y; Korakianitis T
    Comput Biol Med; 2018 Feb; 93():127-138. PubMed ID: 29304409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensor-Based Physiologic Control Strategy for Biventricular Support with Rotary Blood Pumps.
    Wang Y; Koenig SC; Wu Z; Slaughter MS; Giridharan GA
    ASAIO J; 2018; 64(3):338-350. PubMed ID: 28938308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Research on Control of the Cardiovascular System Based on a Left Ventricular Assist Device].
    Wang F; Xu Q; Wu Z; Wen T; Ji J; He Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Dec; 33(6):1075-83. PubMed ID: 29714970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rotary blood pump control strategy for preventing left ventricular suction.
    Wang Y; Koenig SC; Slaughter MS; Giridharan GA
    ASAIO J; 2015; 61(1):21-30. PubMed ID: 25248043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fully autonomous preload-sensitive control of implantable rotary blood pumps.
    Arndt A; Nüsser P; Lampe B
    Artif Organs; 2010 Sep; 34(9):726-35. PubMed ID: 20883392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.