BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 10827185)

  • 1. Inactivation of rabbit muscle creatine kinase by reversible formation of an internal disulfide bond induced by the fungal toxin gliotoxin.
    Hurne AM; Chai CL; Waring P
    J Biol Chem; 2000 Aug; 275(33):25202-6. PubMed ID: 10827185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorylase and creatine kinase modification by thiol-disulfide exchange and by xanthine oxidase-initiated S-thiolation.
    Miller RM; Sies H; Park EM; Thomas JA
    Arch Biochem Biophys; 1990 Feb; 276(2):355-63. PubMed ID: 2106288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inactivation of creatine kinase by S-glutathionylation of the active-site cysteine residue.
    Reddy S; Jones AD; Cross CE; Wong PS; Van Der Vliet A
    Biochem J; 2000 May; 347 Pt 3(Pt 3):821-7. PubMed ID: 10769188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective inactivation of glutaredoxin by sporidesmin and other epidithiopiperazinediones.
    Srinivasan U; Bala A; Jao SC; Starke DW; Jordan TW; Mieyal JJ
    Biochemistry; 2006 Jul; 45(29):8978-87. PubMed ID: 16846241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Taurine chloramine is more selective than hypochlorous acid at targeting critical cysteines and inactivating creatine kinase and glyceraldehyde-3-phosphate dehydrogenase.
    Peskin AV; Winterbourn CC
    Free Radic Biol Med; 2006 Jan; 40(1):45-53. PubMed ID: 16337878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thiol/disulfide redox equilibrium and kinetic behavior of chicken liver fatty acid synthase.
    Walters DW; Gilbert HF
    J Biol Chem; 1986 Oct; 261(28):13135-43. PubMed ID: 3759951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and functional consequences of inactivation of human glutathione S-transferase P1-1 mediated by the catechol metabolite of equine estrogens, 4-hydroxyequilenin.
    Chang M; Shin YG; van Breemen RB; Blond SY; Bolton JL
    Biochemistry; 2001 Apr; 40(15):4811-20. PubMed ID: 11294649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thiol/disulfide exchange between rabbit muscle phosphofructokinase and glutathione. Kinetics and thermodynamics of enzyme oxidation.
    Walters DW; Gilbert HF
    J Biol Chem; 1986 Nov; 261(33):15372-7. PubMed ID: 2946673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonessentiality of the active sulfhydryl group of rabbit muscle creatine kinase.
    J Biol Chem; 1974 May; 249(10):3317-8. PubMed ID: 4364425
    [No Abstract]   [Full Text] [Related]  

  • 10. H2O2-induced intermolecular disulfide bond formation between receptor protein-tyrosine phosphatases.
    van der Wijk T; Overvoorde J; den Hertog J
    J Biol Chem; 2004 Oct; 279(43):44355-61. PubMed ID: 15294898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly conserved cysteines of mouse core 2 beta1,6-N-acetylglucosaminyltransferase I form a network of disulfide bonds and include a thiol that affects enzyme activity.
    Yen TY; Macher BA; Bryson S; Chang X; Tvaroska I; Tse R; Takeshita S; Lew AM; Datti A
    J Biol Chem; 2003 Nov; 278(46):45864-81. PubMed ID: 12954635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel redox mechanism for the glutathione-dependent reversible uptake of a fungal toxin in cells.
    Bernardo PH; Brasch N; Chai CL; Waring P
    J Biol Chem; 2003 Nov; 278(47):46549-55. PubMed ID: 12947114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thiol/disulfide redox equilibrium between glutathione and glycogen debranching enzyme (amylo-1,6-glucosidase/4-alpha-glucanotransferase) from rabbit muscle.
    Cappel RE; Bremer JW; Timmons TM; Nelson TE; Gilbert HF
    J Biol Chem; 1986 Nov; 261(33):15385-9. PubMed ID: 2946674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modification of sulfhydryl groups of creatine kinase by urate.
    Madelian V; Warren WA
    Clin Biochem; 1984 Jun; 17(3):173-4. PubMed ID: 6733897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidation and S-nitrosylation of cysteines in human cytosolic and mitochondrial glutaredoxins: effects on structure and activity.
    Hashemy SI; Johansson C; Berndt C; Lillig CH; Holmgren A
    J Biol Chem; 2007 May; 282(19):14428-36. PubMed ID: 17355958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Replacement of the active-site cysteine residues of DsbA, a protein required for disulfide bond formation in vivo.
    Zapun A; Cooper L; Creighton TE
    Biochemistry; 1994 Feb; 33(7):1907-14. PubMed ID: 8110795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteinase inhibition by proform of eosinophil major basic protein (pro-MBP) is a multistep process of intra- and intermolecular disulfide rearrangements.
    Glerup S; Boldt HB; Overgaard MT; Sottrup-Jensen L; Giudice LC; Oxvig C
    J Biol Chem; 2005 Mar; 280(11):9823-32. PubMed ID: 15647258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of disulfide bond in p53 correlates with inhibition of DNA binding and tetramerization.
    Sun XZ; Vinci C; Makmura L; Han S; Tran D; Nguyen J; Hamann M; Grazziani S; Sheppard S; Gutova M; Zhou F; Thomas J; Momand J
    Antioxid Redox Signal; 2003 Oct; 5(5):655-65. PubMed ID: 14580323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox regulation of SH2-domain-containing protein tyrosine phosphatases by two backdoor cysteines.
    Chen CY; Willard D; Rudolph J
    Biochemistry; 2009 Feb; 48(6):1399-409. PubMed ID: 19166311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The refolding of denatured rabbit muscle creatine kinase.
    Bickerstaff GF; Paterson C; Price NC
    Biochim Biophys Acta; 1980 Feb; 621(2):305-14. PubMed ID: 6766324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.