BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 10827197)

  • 1. The role of positively charged amino acids in ATP recognition by human P2X(1) receptors.
    Ennion S; Hagan S; Evans RJ
    J Biol Chem; 2000 Sep; 275(38):29361-7. PubMed ID: 10827197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ATP binding at human P2X1 receptors. Contribution of aromatic and basic amino acids revealed using mutagenesis and partial agonists.
    Roberts JA; Evans RJ
    J Biol Chem; 2004 Mar; 279(10):9043-55. PubMed ID: 14699168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of amino acid residues contributing to the ATP-binding site of a purinergic P2X receptor.
    Jiang LH; Rassendren F; Surprenant A; North RA
    J Biol Chem; 2000 Nov; 275(44):34190-6. PubMed ID: 10940304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional characterization of a P2X receptor from Schistosoma mansoni.
    Agboh KC; Webb TE; Evans RJ; Ennion SJ
    J Biol Chem; 2004 Oct; 279(40):41650-7. PubMed ID: 15292267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cysteine substitution mutants give structural insight and identify ATP binding and activation sites at P2X receptors.
    Roberts JA; Evans RJ
    J Neurosci; 2007 Apr; 27(15):4072-82. PubMed ID: 17428985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conserved negatively charged residues are not required for ATP action at P2X(1) receptors.
    Ennion SJ; Ritson J; Evans RJ
    Biochem Biophys Res Commun; 2001 Dec; 289(3):700-4. PubMed ID: 11726204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cysteine substitution mutagenesis and the effects of methanethiosulfonate reagents at P2X2 and P2X4 receptors support a core common mode of ATP action at P2X receptors.
    Roberts JA; Digby HR; Kara M; El Ajouz S; Sutcliffe MJ; Evans RJ
    J Biol Chem; 2008 Jul; 283(29):20126-36. PubMed ID: 18487206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ectodomain lysines and suramin block of P2X1 receptors.
    Sim JA; Broomhead HE; North RA
    J Biol Chem; 2008 Oct; 283(44):29841-6. PubMed ID: 18765669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Arg307 to Gln polymorphism within the ATP-binding site causes loss of function of the human P2X7 receptor.
    Gu BJ; Sluyter R; Skarratt KK; Shemon AN; Dao-Ung LP; Fuller SJ; Barden JA; Clarke AL; Petrou S; Wiley JS
    J Biol Chem; 2004 Jul; 279(30):31287-95. PubMed ID: 15123679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular properties of P2X receptors.
    Roberts JA; Vial C; Digby HR; Agboh KC; Wen H; Atterbury-Thomas A; Evans RJ
    Pflugers Arch; 2006 Aug; 452(5):486-500. PubMed ID: 16607539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conserved cysteine residues in the extracellular loop of the human P2X(1) receptor form disulfide bonds and are involved in receptor trafficking to the cell surface.
    Ennion SJ; Evans RJ
    Mol Pharmacol; 2002 Feb; 61(2):303-11. PubMed ID: 11809854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular basis of selective antagonism of the P2X1 receptor for ATP by NF449 and suramin: contribution of basic amino acids in the cysteine-rich loop.
    El-Ajouz S; Ray D; Allsopp RC; Evans RJ
    Br J Pharmacol; 2012 Jan; 165(2):390-400. PubMed ID: 21671897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A protein kinase C site highly conserved in P2X subunits controls the desensitization kinetics of P2X(2) ATP-gated channels.
    Boué-Grabot E; Archambault V; Séguéla P
    J Biol Chem; 2000 Apr; 275(14):10190-5. PubMed ID: 10744703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of transmembrane regions to ATP-gated P2X2 channel permeability dynamics.
    Khakh BS; Egan TM
    J Biol Chem; 2005 Feb; 280(7):6118-29. PubMed ID: 15556949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of an intersubunit cross-link between substituted cysteine residues located in the putative ATP binding site of the P2X1 receptor.
    Marquez-Klaka B; Rettinger J; Bhargava Y; Eisele T; Nicke A
    J Neurosci; 2007 Feb; 27(6):1456-66. PubMed ID: 17287520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A P2X receptor from the tardigrade species Hypsibius dujardini with fast kinetics and sensitivity to zinc and copper.
    Bavan S; Straub VA; Blaxter ML; Ennion SJ
    BMC Evol Biol; 2009 Jan; 9():17. PubMed ID: 19154569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acidic amino acids impart enhanced Ca2+ permeability and flux in two members of the ATP-gated P2X receptor family.
    Samways DS; Egan TM
    J Gen Physiol; 2007 Mar; 129(3):245-56. PubMed ID: 17325195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. P2X(1) receptor subunit contribution to gating revealed by a dominant negative PKC mutant.
    Ennion SJ; Evans RJ
    Biochem Biophys Res Commun; 2002 Mar; 291(3):611-6. PubMed ID: 11855833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conserved lysin and arginin residues in the extracellular loop of P2X(3) receptors are involved in agonist binding.
    Fischer W; Zadori Z; Kullnick Y; Gröger-Arndt H; Franke H; Wirkner K; Illes P; Mager PP
    Eur J Pharmacol; 2007 Dec; 576(1-3):7-17. PubMed ID: 17764672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Participation of the Lys313-Ile333 sequence of the purinergic P2X4 receptor in agonist binding and transduction of signals to the channel gate.
    Yan Z; Liang Z; Obsil T; Stojilkovic SS
    J Biol Chem; 2006 Oct; 281(43):32649-59. PubMed ID: 16954225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.