These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 1082782)
1. Human bone marrow lymphocytes: B and T cell precursors and subpopulations. Abdou NL; Alavi JB; Abdou NI Blood; 1976 Mar; 47(3):423-30. PubMed ID: 1082782 [TBL] [Abstract][Full Text] [Related]
2. Committed precursors of B and T lymphocytes in chick embryo bursa of Fabricius, thymus, and bone marrow. Brand A; Galton J; Gilmour DG Eur J Immunol; 1983 Jun; 13(6):449-55. PubMed ID: 6190659 [TBL] [Abstract][Full Text] [Related]
3. In rat B lymphocyte genesis sixty percent is lost from the bone marrow at the transition of nondividing pre-B cell to sIgM+ B lymphocyte, the stage of Ig light chain gene expression. Deenen GJ; Van Balen I; Opstelten D Eur J Immunol; 1990 Mar; 20(3):557-64. PubMed ID: 2108044 [TBL] [Abstract][Full Text] [Related]
4. Functional maturation of murine B lymphocyte precursors. I. Selection of adherent cell-dependent precursors from bone marrow and fetal liver. Gisler RH; Holländer G; Söderberg A J Immunol; 1987 Apr; 138(8):2427-32. PubMed ID: 3494065 [TBL] [Abstract][Full Text] [Related]
5. Terminal differentiation of human bone marrow cells capable of spontaneous and high-rate immunoglobulin secretion: role of bone marrow stromal cells and interleukin 6. Roldán E; Brieva JA Eur J Immunol; 1991 Nov; 21(11):2671-7. PubMed ID: 1936115 [TBL] [Abstract][Full Text] [Related]
6. Comparative study of bone marrow and blood B cells in infantile and acquired agammaglobulinemia. Possible role of circulating anti-IgM in pathogenesis. Abdou NI; Casella SR; Abdou NL; Abrahamsohn IA J Clin Invest; 1973 Sep; 52(9):2218-24. PubMed ID: 4580388 [TBL] [Abstract][Full Text] [Related]
7. Determination of normal expression patterns of CD86, CD210a, CD261, CD262, CD264, CD358, and CD361 in peripheral blood and bone marrow cells by flow cytometry. Rudolf-Oliveira RCM; Auat M; Cardoso CC; Santos-Pirath IM; Lange BG; Pires-Silva J; Moraes ACR; Dametto GC; Pirolli MM; Colombo MDHP; Santos-Silva MC Immunol Lett; 2018 Feb; 194():44-55. PubMed ID: 29274771 [TBL] [Abstract][Full Text] [Related]
8. VLA-4-fibronectin interaction is required for the terminal differentiation of human bone marrow cells capable of spontaneous and high rate immunoglobulin secretion. Roldán E; García-Pardo A; Brieva JA J Exp Med; 1992 Jun; 175(6):1739-47. PubMed ID: 1588291 [TBL] [Abstract][Full Text] [Related]
9. The composition of CD34 subpopulations differs between bone marrow, blood and cord blood. Fritsch G; Stimpfl M; Kurz M; Printz D; Buchinger P; Fischmeister G; Hoecker P; Gadner H Bone Marrow Transplant; 1996 Feb; 17(2):169-78. PubMed ID: 8640162 [TBL] [Abstract][Full Text] [Related]
10. Human pre-B cells differentiate into Ig-secreting plasma cells in the presence of interleukin-4 and activated CD4+ T cells or their membranes. Punnonen J; Aversa G; de Vries JE Blood; 1993 Nov; 82(9):2781-9. PubMed ID: 7693047 [TBL] [Abstract][Full Text] [Related]
11. Identification and comparison of CD34-positive cells and their subpopulations from normal peripheral blood and bone marrow using multicolor flow cytometry. Bender JG; Unverzagt KL; Walker DE; Lee W; Van Epps DE; Smith DH; Stewart CC; To LB Blood; 1991 Jun; 77(12):2591-6. PubMed ID: 1710512 [TBL] [Abstract][Full Text] [Related]
12. A stathmokinetic study of B lymphocytopoiesis in rat bone marrow: proliferation of cells containing cytoplasmic mu-chains, terminal deoxynucleotidyl transferase and carrying HIS24 antigen. Deenen GJ; Hunt SV; Opstelten D J Immunol; 1987 Aug; 139(3):702-10. PubMed ID: 3110280 [TBL] [Abstract][Full Text] [Related]
13. Developmental hierarchy during early human B-cell ontogeny after autologous bone marrow transplantation using autografts depleted of CD19+ B-cell precursors by an anti-CD19 pan-B-cell immunotoxin containing pokeweed antiviral protein. Uckun FM; Haissig S; Ledbetter JA; Fidler P; Myers DE; Kuebelbeck V; Weisdorf D; Gajl-Peczalska K; Kersey JH; Ramsay NK Blood; 1992 Jun; 79(12):3369-79. PubMed ID: 1375851 [TBL] [Abstract][Full Text] [Related]
14. Functional maturation of murine B lymphocyte precursors. II. Analysis of cells required from the bone marrow microenvironment. Gisler RH; Söderberg A; Kamber M J Immunol; 1987 Apr; 138(8):2433-8. PubMed ID: 3494066 [TBL] [Abstract][Full Text] [Related]
15. Characteristics and differential T-cell dependency of human B-cell colony precursors. Whisler R; Newhouse Y Cell Immunol; 1982 Mar; 67(2):346-54. PubMed ID: 6805962 [No Abstract] [Full Text] [Related]
16. Regulation of immunoglobulin production in human peripheral bood leukocytes: cellular interactions. Saxon A; Stevens RH; Ashman RF J Immunol; 1977 May; 118(5):1782-9. PubMed ID: 140195 [TBL] [Abstract][Full Text] [Related]
17. The analysis of immature lymphoid precursors stored in longterm bone marrow culture. Miyazoe I; Taniguchi M; Takemori T Microbiol Immunol; 1988; 32(6):607-20. PubMed ID: 3262811 [TBL] [Abstract][Full Text] [Related]
18. Notch 1-deficient common lymphoid precursors adopt a B cell fate in the thymus. Wilson A; MacDonald HR; Radtke F J Exp Med; 2001 Oct; 194(7):1003-12. PubMed ID: 11581321 [TBL] [Abstract][Full Text] [Related]
19. Functional studies on T cells in adult human bone marrow. De Gast GC; Platts-Mills TA Clin Exp Immunol; 1979 Oct; 38(1):99-105. PubMed ID: 160850 [TBL] [Abstract][Full Text] [Related]
20. Differences in the sensitivity of normal human peripheral blood and bone marrow granulocytic-macrophagic and eosinophilic colony forming cells (CFC) to a source of colony stimulating factor. Chikkappa G; Phillips PG; Brinson P Exp Hematol; 1982 Nov; 10(10):852-8. PubMed ID: 6983975 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]