These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 10827962)

  • 1. Spatial buffering of potassium ions in brain extracellular space.
    Chen KC; Nicholson C
    Biophys J; 2000 Jun; 78(6):2776-97. PubMed ID: 10827962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ionic changes and alterations in the size of the extracellular space during epileptic activity.
    Lux HD; Heinemann U; Dietzel I
    Adv Neurol; 1986; 44():619-39. PubMed ID: 3518349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relations between slow extracellular potential changes, glial potassium buffering, and electrolyte and cellular volume changes during neuronal hyperactivity in cat brain.
    Dietzel I; Heinemann U; Lux HD
    Glia; 1989; 2(1):25-44. PubMed ID: 2523337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potassium buffering in the central nervous system.
    Kofuji P; Newman EA
    Neuroscience; 2004; 129(4):1045-56. PubMed ID: 15561419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model of potassium dynamics in the central nervous system.
    Odette LL; Newman EA
    Glia; 1988; 1(3):198-210. PubMed ID: 2976039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular substrates of potassium spatial buffering in glial cells.
    Kofuji P; Connors NC
    Mol Neurobiol; 2003 Oct; 28(2):195-208. PubMed ID: 14576456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Potassium channels in glial cells].
    Horio Y; Kurachi Y
    Nihon Yakurigaku Zasshi; 1997 Mar; 109(3):103-10. PubMed ID: 9108558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Switch of K+ buffering conditions in rabbit retinal Müller glial cells during postnatal development.
    Schopf S; Ruge H; Bringmann A; Reichenbach A; Skatchkov SN
    Neurosci Lett; 2004 Jul; 365(3):167-70. PubMed ID: 15246541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potassium buffering by Müller cells isolated from the center and periphery of the frog retina.
    Skatchkov SN; Krusek J; Reichenbach A; Orkand RK
    Glia; 1999 Aug; 27(2):171-80. PubMed ID: 10417816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glial modulation of neural excitability mediated by extracellular pH: a hypothesis.
    Ransom BR
    Prog Brain Res; 1992; 94():37-46. PubMed ID: 1287724
    [No Abstract]   [Full Text] [Related]  

  • 11. Potassium channels of glial cells: distribution and function.
    Horio Y
    Jpn J Pharmacol; 2001 Sep; 87(1):1-6. PubMed ID: 11676192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of potassium dynamics in mammalian brain tissue.
    Gardner-Medwin AR
    J Physiol; 1983 Feb; 335():393-426. PubMed ID: 6875885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-pore-domain potassium channels contribute to neuronal potassium release and glial potassium buffering in the rat hippocampus.
    Päsler D; Gabriel S; Heinemann U
    Brain Res; 2007 Oct; 1173():14-26. PubMed ID: 17850772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kir4.1-mediated spatial buffering of K(+): experimental challenges in determination of its temporal and quantitative contribution to K(+) clearance in the brain.
    Larsen BR; MacAulay N
    Channels (Austin); 2014; 8(6):544-50. PubMed ID: 25483287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer simulations of neuron-glia interactions mediated by ion flux.
    Somjen GG; Kager H; Wadman WJ
    J Comput Neurosci; 2008 Oct; 25(2):349-65. PubMed ID: 18297383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modification of potassium movement through the retina of the drone (Apis mellifera male) by glial uptake.
    Coles JA; Orkand RK
    J Physiol; 1983 Jul; 340():157-74. PubMed ID: 6887045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kir potassium channel subunit expression in retinal glial cells: implications for spatial potassium buffering.
    Kofuji P; Biedermann B; Siddharthan V; Raap M; Iandiev I; Milenkovic I; Thomzig A; Veh RW; Bringmann A; Reichenbach A
    Glia; 2002 Sep; 39(3):292-303. PubMed ID: 12203395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clearance of extracellular potassium: evidence for spatial buffering by glial cells in the retina of the drone.
    Gardner-Medwin AR; Coles JA; Tsacopoulos M
    Brain Res; 1981 Mar; 209(2):452-7. PubMed ID: 6261870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endfeet of retinal glial cells have higher densities of ion channels that mediate K+ buffering.
    Brew H; Gray PT; Mobbs P; Attwell D
    Nature; 1986 Dec 4-10; 324(6096):466-8. PubMed ID: 2431322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Voltage-dependent ion channels in glial cells.
    Sontheimer H
    Glia; 1994 Jun; 11(2):156-72. PubMed ID: 7523291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.