These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 10827989)

  • 1. Different myofilament nearest-neighbor interactions have distinctive effects on contractile behavior.
    Razumova MV; Bukatina AE; Campbell KB
    Biophys J; 2000 Jun; 78(6):3120-37. PubMed ID: 10827989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of striated muscle: nearest-neighbor regulatory-unit and cross-bridge influence on myofilament kinetics.
    Robinson JM; Wang Y; Kerrick WG; Kawai R; Cheung HC
    J Mol Biol; 2002 Oct; 322(5):1065-88. PubMed ID: 12367529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling of adjacent tropomyosins enhances cross-bridge-mediated cooperative activation in a markov model of the cardiac thin filament.
    Campbell SG; Lionetti FV; Campbell KS; McCulloch AD
    Biophys J; 2010 May; 98(10):2254-64. PubMed ID: 20483334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A cellular automaton model for the regulatory behavior of muscle thin filaments.
    Zou G; Phillips GN
    Biophys J; 1994 Jul; 67(1):11-28. PubMed ID: 7918978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear myofilament regulatory processes affect frequency-dependent muscle fiber stiffness.
    Campbell KB; Razumova MV; Kirkpatrick RD; Slinker BK
    Biophys J; 2001 Oct; 81(4):2278-96. PubMed ID: 11566798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rate constant of muscle force redevelopment reflects cooperative activation as well as cross-bridge kinetics.
    Campbell K
    Biophys J; 1997 Jan; 72(1):254-62. PubMed ID: 8994610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ising model of cardiac thin filament activation with nearest-neighbor cooperative interactions.
    Rice JJ; Stolovitzky G; Tu Y; de Tombe PP
    Biophys J; 2003 Feb; 84(2 Pt 1):897-909. PubMed ID: 12547772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Faster force transient kinetics at submaximal Ca2+ activation of skinned psoas fibers from rabbit.
    Martyn DA; Chase PB
    Biophys J; 1995 Jan; 68(1):235-42. PubMed ID: 7711246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sarcomere lattice geometry influences cooperative myosin binding in muscle.
    Tanner BC; Daniel TL; Regnier M
    PLoS Comput Biol; 2007 Jul; 3(7):e115. PubMed ID: 17630823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of thin-filament-regulated muscle by calcium ion: considerations based on nearest-neighbor lattice statistics.
    Shiner JS; Solaro RJ
    Proc Natl Acad Sci U S A; 1982 Aug; 79(15):4637-41. PubMed ID: 6956882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cross-bridge versus thin filament contributions to the level and rate of force development in cardiac muscle.
    Regnier M; Martin H; Barsotti RJ; Rivera AJ; Martyn DA; Clemmens E
    Biophys J; 2004 Sep; 87(3):1815-24. PubMed ID: 15345560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myofilament kinetics in isometric twitch dynamics.
    Campbell KB; Razumova MV; Kirkpatrick RD; Slinker BK
    Ann Biomed Eng; 2001 May; 29(5):384-405. PubMed ID: 11400720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of titin in eccentric muscle contraction.
    Herzog W
    J Exp Biol; 2014 Aug; 217(Pt 16):2825-33. PubMed ID: 25122914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The three filament model of skeletal muscle stability and force production.
    Herzog W; Leonard T; Joumaa V; DuVall M; Panchangam A
    Mol Cell Biomech; 2012 Sep; 9(3):175-91. PubMed ID: 23285733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Approaches to modeling crossbridges and calcium-dependent activation in cardiac muscle.
    Rice JJ; de Tombe PP
    Prog Biophys Mol Biol; 2004; 85(2-3):179-95. PubMed ID: 15142743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Geometrical factors influencing muscle force development. I. The effect of filament spacing upon axial forces.
    Schoenberg M
    Biophys J; 1980 Apr; 30(1):51-67. PubMed ID: 6894872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ca2+ sensitivity of regulated cardiac thin filament sliding does not depend on myosin isoform.
    Schoffstall B; Brunet NM; Williams S; Miller VF; Barnes AT; Wang F; Compton LA; McFadden LA; Taylor DW; Seavy M; Dhanarajan R; Chase PB
    J Physiol; 2006 Dec; 577(Pt 3):935-44. PubMed ID: 17008370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of phosphate and acidosis on regulated thin-filament velocity in an in vitro motility assay.
    Debold EP; Longyear TJ; Turner MA
    J Appl Physiol (1985); 2012 Nov; 113(9):1413-22. PubMed ID: 23019317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium regulation of muscle contraction.
    Szent-Györgyi AG
    Biophys J; 1975 Jul; 15(7):707-23. PubMed ID: 806311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Equilibrium muscle cross-bridge behavior. Theoretical considerations. II. Model describing the behavior of strongly-binding cross-bridges when both heads of myosin bind to the actin filament.
    Schoenberg M
    Biophys J; 1991 Sep; 60(3):679-89. PubMed ID: 1932554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.