BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 10827993)

  • 1. Buffer effects on electric signals of light-excited bacteriorhodopsin.
    Tóth-Boconádi R; Dér A; Keszthelyi L
    Biophys J; 2000 Jun; 78(6):3170-7. PubMed ID: 10827993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Buffer effects on electric signals of light-excited bacteriorhodopsin mutants.
    Tóth-Boconádi R; Dér A; Taneva SG; Tuparev NP; Keszthelyi L
    Eur Biophys J; 2001; 30(2):140-6. PubMed ID: 11409465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electric signals during the bacteriorhodopsin photocycle, determined over a wide pH range.
    Ludmann K; Gergely C; Dér A; Váró G
    Biophys J; 1998 Dec; 75(6):3120-6. PubMed ID: 9826632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient approach to determine the pK(a) of the proton release complex in the photocycle of retinal proteins.
    Wu J; Ma D; Wang Y; Ming M; Balashov SP; Ding J
    J Phys Chem B; 2009 Apr; 113(13):4482-91. PubMed ID: 19281200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid pH change due to bacteriorhodopsin measured with a tin-oxide electrode.
    Robertson B; Lukashev EP
    Biophys J; 1995 Apr; 68(4):1507-17. PubMed ID: 7787036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical and electric signals from dried oriented purple membrane of bacteriorhodopsins.
    Tóth-Boconádi R; Dér A; Keszthelyi L
    Bioelectrochemistry; 2011 Apr; 81(1):17-21. PubMed ID: 21236739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arginine-82 regulates the pKa of the group responsible for the light-driven proton release in bacteriorhodopsin.
    Govindjee R; Misra S; Balashov SP; Ebrey TG; Crouch RK; Menick DR
    Biophys J; 1996 Aug; 71(2):1011-23. PubMed ID: 8842238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship of proton release at the extracellular surface to deprotonation of the schiff base in the bacteriorhodopsin photocycle.
    Cao Y; Brown LS; Sasaki J; Maeda A; Needleman R; Lanyi JK
    Biophys J; 1995 Apr; 68(4):1518-30. PubMed ID: 7787037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of pH buffer molecules on the light-induced currents from oriented purple membrane.
    Liu SY; Kono M; Ebrey TG
    Biophys J; 1991 Jul; 60(1):204-16. PubMed ID: 1883939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Excitation of the M intermediates of bacteriorhodopsin.
    Tóth-Boconádi R; Dér A; Fábián L; Taneva SG; Keszthelyi L
    Photochem Photobiol; 2009; 85(2):609-13. PubMed ID: 19222799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling of photocurrent kinetics upon pulsed photoexcitation of photosynthetic proteins: a case of bacteriorhodopsin.
    Kuo CL; Chu LK
    Bioelectrochemistry; 2014 Oct; 99():1-7. PubMed ID: 24935522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein structural change at the cytoplasmic surface as the cause of cooperativity in the bacteriorhodopsin photocycle.
    Váró G; Needleman R; Lanyi JK
    Biophys J; 1996 Jan; 70(1):461-7. PubMed ID: 8770222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The photochemical reaction cycle of retinal reconstituted bacteriorhodopsin.
    Magyari K; Bálint Z; Simon V; Váró G
    J Photochem Photobiol B; 2006 Nov; 85(2):140-4. PubMed ID: 16904334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhomogeneous stability of bacteriorhodopsin in purple membrane against photobleaching at high temperature.
    Yokoyama Y; Sonoyama M; Mitaku S
    Proteins; 2004 Feb; 54(3):442-54. PubMed ID: 14747993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for the first phase of the reprotonation switch of bacteriorhodopsin from time-resolved photovoltage and flash photolysis experiments on the photoreversal of the M-intermediate.
    Dickopf S; Heyn MP
    Biophys J; 1997 Dec; 73(6):3171-81. PubMed ID: 9414229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversible inhibition of proton release activity and the anesthetic-induced acid-base equilibrium between the 480 and 570 nm forms of bacteriorhodopsin.
    Boucher F; Taneva SG; Elouatik S; Déry M; Messaoudi S; Harvey-Girard E; Beaudoin N
    Biophys J; 1996 Feb; 70(2):948-61. PubMed ID: 8789112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoelectric properties of a detector based on dried bacteriorhodopsin film.
    Wang WW; Knopf GK; Bassi AS
    Biosens Bioelectron; 2006 Jan; 21(7):1309-19. PubMed ID: 16039842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoelectric response of the N intermediate of bacteriorhodopsin and its mutant T46V.
    Tóth-Boconádi R; Szabó-Nagy A; Taneva SG; Keszthelyi L
    FEBS Lett; 1999 Oct; 459(1):5-8. PubMed ID: 10508907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electric response of a back photoreaction in the bacteriorhodopsin photocycle.
    Ormos P; Dancsházy Z; Keszthelyi L
    Biophys J; 1980 Aug; 31(2):207-13. PubMed ID: 6266533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrooptical measurements on purple membrane containing bacteriorhodopsin mutants.
    Mostafa HI; Váró G; Tóth-Boconádi R; Dér A; Keszthelyi L
    Biophys J; 1996 Jan; 70(1):468-72. PubMed ID: 8770223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.