BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 10828071)

  • 1. Generating a high affinity scorpion toxin receptor in KcsA-Kv1.3 chimeric potassium channels.
    Legros C; Pollmann V; Knaus HG; Farrell AM; Darbon H; Bougis PE; Martin-Eauclaire MF; Pongs O
    J Biol Chem; 2000 Jun; 275(22):16918-24. PubMed ID: 10828071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering-specific pharmacological binding sites for peptidyl inhibitors of potassium channels into KcsA.
    Legros C; Schulze C; Garcia ML; Bougis PE; Martin-Eauclaire MF; Pongs O
    Biochemistry; 2002 Dec; 41(51):15369-75. PubMed ID: 12484776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. KcsA-Kv1.x chimeras with complete ligand-binding sites provide improved predictivity for screening selective Kv1.x blockers.
    Szekér P; Bodó T; Klima K; Csóti Á; Hanh NN; Murányi J; Hajdara A; Szántó TG; Panyi G; Megyeri M; Péterfi Z; Farkas S; Gyöngyösi N; Hornyák P
    J Biol Chem; 2024 Apr; 300(4):107155. PubMed ID: 38479597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chimeras of KcsA and Kv1 as a bioengineering tool to study voltage-gated potassium channels and their ligands.
    Kudryashova KS; Nekrasova OV; Kirpichnikov MP; Feofanov AV
    Biochem Pharmacol; 2021 Aug; 190():114646. PubMed ID: 34090876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular docking of the scorpion toxin Tc1 to the structural model of the voltage-gated potassium channel Kv1.1 from human Homo sapiens.
    Liu HL; Lin JC
    J Biomol Struct Dyn; 2004 Apr; 21(5):639-50. PubMed ID: 14769056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toxin-induced conformational changes in a potassium channel revealed by solid-state NMR.
    Lange A; Giller K; Hornig S; Martin-Eauclaire MF; Pongs O; Becker S; Baldus M
    Nature; 2006 Apr; 440(7086):959-62. PubMed ID: 16612389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum mechanical calculations of charge effects on gating the KcsA channel.
    Kariev AM; Znamenskiy VS; Green ME
    Biochim Biophys Acta; 2007 May; 1768(5):1218-29. PubMed ID: 17336921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of C-terminal protein domains and protein-lipid interactions on tetramerization and stability of the potassium channel KcsA.
    Molina ML; Encinar JA; Barrera FN; Fernández-Ballester G; Riquelme G; González-Ros JM
    Biochemistry; 2004 Nov; 43(47):14924-31. PubMed ID: 15554699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the outer pore region of the apamin-sensitive Ca2+-activated K+ channel rSK2.
    Jäger H; Grissmer S
    Toxicon; 2004 Jun; 43(8):951-60. PubMed ID: 15208028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brownian dynamics simulations of the recognition of the scorpion toxin maurotoxin with the voltage-gated potassium ion channels.
    Fu W; Cui M; Briggs JM; Huang X; Xiong B; Zhang Y; Luo X; Shen J; Ji R; Jiang H; Chen K
    Biophys J; 2002 Nov; 83(5):2370-85. PubMed ID: 12414674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complexes of Peptide Blockers with Kv1.6 Pore Domain: Molecular Modeling and Studies with KcsA-Kv1.6 Channel.
    Nekrasova OV; Volyntseva AD; Kudryashova KS; Novoseletsky VN; Lyapina EA; Illarionova AV; Yakimov SA; Korolkova YV; Shaitan KV; Kirpichnikov MP; Feofanov AV
    J Neuroimmune Pharmacol; 2017 Jun; 12(2):260-276. PubMed ID: 27640211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural conservation of the pores of calcium-activated and voltage-gated potassium channels determined by a sea anemone toxin.
    Rauer H; Pennington M; Cahalan M; Chandy KG
    J Biol Chem; 1999 Jul; 274(31):21885-92. PubMed ID: 10419508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural differences of bacterial and mammalian K+ channels.
    Wrisch A; Grissmer S
    J Biol Chem; 2000 Dec; 275(50):39345-53. PubMed ID: 10962004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transfer of the scorpion toxin receptor to an insensitive potassium channel.
    Gross A; Abramson T; MacKinnon R
    Neuron; 1994 Oct; 13(4):961-6. PubMed ID: 7946339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A four-disulphide-bridged toxin, with high affinity towards voltage-gated K+ channels, isolated from Heterometrus spinnifer (Scorpionidae) venom.
    Lebrun B; Romi-Lebrun R; Martin-Eauclaire MF; Yasuda A; Ishiguro M; Oyama Y; Pongs O; Nakajima T
    Biochem J; 1997 Nov; 328 ( Pt 1)(Pt 1):321-7. PubMed ID: 9359871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A model of scorpion toxin binding to voltage-gated K+ channels.
    Lipkind GM; Fozzard HA
    J Membr Biol; 1997 Aug; 158(3):187-96. PubMed ID: 9263881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. KcsA crystal structure as framework for a molecular model of the Na(+) channel pore.
    Lipkind GM; Fozzard HA
    Biochemistry; 2000 Jul; 39(28):8161-70. PubMed ID: 10889022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular compatibility of the channel gate and the N terminus of S5 segment for voltage-gated channel activity.
    Caprini M; Fava M; Valente P; Fernandez-Ballester G; Rapisarda C; Ferroni S; Ferrer-Montiel A
    J Biol Chem; 2005 May; 280(18):18253-64. PubMed ID: 15749711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A set of homology models of pore loop domain of six eukaryotic voltage-gated potassium channels Kv1.1-Kv1.6.
    Liu HL; Lin JC
    Proteins; 2004 May; 55(3):558-67. PubMed ID: 15103620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recombinant Kv channels at the membrane of Escherichia coli bind specifically agitoxin2.
    Nekrasova OV; Ignatova AA; Nazarova AI; Feofanov AV; Korolkova YV; Boldyreva EF; Tagvei AI; Grishin EV; Arseniev AS; Kirpichnikov MP
    J Neuroimmune Pharmacol; 2009 Mar; 4(1):83-91. PubMed ID: 18649142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.