These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 10828323)

  • 1. Non-linearities in apparent mass and transmissibility during exposure to whole-body vertical vibration.
    Mansfield NJ; Griffin MJ
    J Biomech; 2000 Aug; 33(8):933-41. PubMed ID: 10828323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-linear characteristics in the dynamic responses of seated subjects exposed to vertical whole-body vibration.
    Matsumoto Y; Griffin MJ
    J Biomech Eng; 2002 Oct; 124(5):527-32. PubMed ID: 12405595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of back support conditions on the apparent mass of seated occupants under horizontal vibration.
    Mandapuram SC; Rakheja S; Shiping MA; Demont RG; Boileau PE
    Ind Health; 2005 Jul; 43(3):421-35. PubMed ID: 16100919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodynamic response of the seated human body to single-axis and dual-axis vibration: effect of backrest and non-linearity.
    Qiu Y; Griffin MJ
    Ind Health; 2012; 50(1):37-51. PubMed ID: 22146145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite element modelling of human-seat interactions: vertical in-line and fore-and-aft cross-axis apparent mass when sitting on a rigid seat without backrest and exposed to vertical vibration.
    Liu C; Qiu Y; Griffin MJ
    Ergonomics; 2015; 58(7):1207-19. PubMed ID: 25716324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A variable parameter single degree-of-freedom model for predicting the effects of sitting posture and vibration magnitude on the vertical apparent mass of the human body.
    Toward MG; Griffin MJ
    Ind Health; 2010; 48(5):654-62. PubMed ID: 20953082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of support conditions on vertical whole-body vibration of the seated human body.
    M-Pranesh A; Rakheja S; Demont R
    Ind Health; 2010; 48(5):682-97. PubMed ID: 20953085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodynamic responses of the seated human body to single-axis and dual-axis vibration.
    Qiu Y; Griffin MJ
    Ind Health; 2010; 48(5):615-27. PubMed ID: 20953078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic forces over the interface between a seated human body and a rigid seat during vertical whole-body vibration.
    Liu C; Qiu Y; Griffin MJ
    J Biomech; 2017 Aug; 61():176-182. PubMed ID: 28780186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Apparent mass and seat-to-head transmissibility responses of seated occupants under single and dual axis horizontal vibration.
    Mandapuram S; Rakheja S; Boileau PÉ; Maeda S; Shibata N
    Ind Health; 2010; 48(5):698-714. PubMed ID: 20953086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Response of the seated human body to whole-body vertical vibration: biodynamic responses to sinusoidal and random vibration.
    Zhou Z; Griffin MJ
    Ergonomics; 2014; 57(5):693-713. PubMed ID: 24730687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of elastic seats on seated body apparent mass responses to vertical whole body vibration.
    Dewangan KN; Rakheja S; Marcotte P; Shahmir A
    Ergonomics; 2015; 58(7):1175-90. PubMed ID: 26062686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Response of the seated human body to whole-body vertical vibration: discomfort caused by sinusoidal vibration.
    Zhou Z; Griffin MJ
    Ergonomics; 2014; 57(5):714-32. PubMed ID: 24730710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tri-axial transmissibility to the head and spine of seated human subjects exposed to fore-and-aft whole-body vibration.
    Nawayseh N; Alchakouch A; Hamdan S
    J Biomech; 2020 Aug; 109():109927. PubMed ID: 32807318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Apparent mass of the seated human body during vertical vibration in the frequency range 2-100 Hz.
    Huang Y; Zhang P; Liang S
    Ergonomics; 2020 Sep; 63(9):1150-1163. PubMed ID: 32401623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The transmission of translational seat vibration to the head--I. Vertical seat vibration.
    Paddan GS; Griffin MJ
    J Biomech; 1988; 21(3):191-7. PubMed ID: 3379079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite element modelling and biodynamic response prediction of the seated human body exposed to whole-body vibration.
    Gao K; Zhang Z; Lu H; Xu Z; He Y
    Ergonomics; 2023 Dec; 66(12):1854-1867. PubMed ID: 36656143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The transmission of translational seat vibration to the head: the effect of measurement position at the head.
    Paddan GS; Griffin MJ
    Proc Inst Mech Eng H; 1992; 206(3):159-68. PubMed ID: 1482511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of vibration magnitude, vibration spectrum and muscle tension on apparent mass and cross axis transfer functions during whole-body vibration exposure.
    Mansfield NJ; Holmlund P; Lundström R; Lenzuni P; Nataletti P
    J Biomech; 2006; 39(16):3062-70. PubMed ID: 16375910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of spinal loading in vertical vibrations by numerical simulation.
    Verver MM; van Hoof J; Oomens CW; van de Wouw N; Wismans JS
    Clin Biomech (Bristol, Avon); 2003 Nov; 18(9):800-11. PubMed ID: 14527806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.