These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 10828330)

  • 21. Theoretical modelling of some spatial and temporal aspects of the mitochondrion/creatine kinase/myofibril system in muscle.
    Kemp GJ; Manners DN; Clark JF; Bastin ME; Radda GK
    Mol Cell Biochem; 1998 Jul; 184(1-2):249-89. PubMed ID: 9746325
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Physiological factors associated with middle distance running performance.
    Brandon LJ
    Sports Med; 1995 Apr; 19(4):268-77. PubMed ID: 7604199
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Age-related changes in ATP-producing pathways in human skeletal muscle in vivo.
    Lanza IR; Befroy DE; Kent-Braun JA
    J Appl Physiol (1985); 2005 Nov; 99(5):1736-44. PubMed ID: 16002769
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The distribution of anaerobic energy in 1000 and 4000 metre cycling bouts.
    van Ingen Schenau GJ; de Koning JJ; de Groot G
    Int J Sports Med; 1992 Aug; 13(6):447-51. PubMed ID: 1428374
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Time course of anaerobic and aerobic energy expenditure during short-term exhaustive running in athletes.
    Nummela A; Rusko H
    Int J Sports Med; 1995 Nov; 16(8):522-7. PubMed ID: 8776206
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Muscle oxygen uptake and energy turnover during dynamic exercise at different contraction frequencies in humans.
    Ferguson RA; Ball D; Krustrup P; Aagaard P; Kjaer M; Sargeant AJ; Hellsten Y; Bangsbo J
    J Physiol; 2001 Oct; 536(Pt 1):261-71. PubMed ID: 11579174
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-speed running performance is largely unaffected by hypoxic reductions in aerobic power.
    Weyand PG; Lee CS; Martinez-Ruiz R; Bundle MW; Bellizzi MJ; Wright S
    J Appl Physiol (1985); 1999 Jun; 86(6):2059-64. PubMed ID: 10368374
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Physiological and metabolic responses of repeated-sprint activities:specific to field-based team sports.
    Spencer M; Bishop D; Dawson B; Goodman C
    Sports Med; 2005; 35(12):1025-44. PubMed ID: 16336007
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Each-step activation of oxidative phosphorylation is necessary to explain muscle metabolic kinetic responses to exercise and recovery in humans.
    Korzeniewski B; Rossiter HB
    J Physiol; 2015 Dec; 593(24):5255-68. PubMed ID: 26503399
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A mathematical analysis of the bioenergetics of hurdling.
    Ward-Smith AJ
    J Sports Sci; 1997 Oct; 15(5):517-26. PubMed ID: 9386209
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phosphorus 31 nuclear magnetic resonance spectroscopy suggests a mitochondrial defect in claudicating skeletal muscle.
    Pipinos II; Shepard AD; Anagnostopoulos PV; Katsamouris A; Boska MD
    J Vasc Surg; 2000 May; 31(5):944-52. PubMed ID: 10805885
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Energy system contribution to 1500- and 3000-metre track running.
    Duffield R; Dawson B; Goodman C
    J Sports Sci; 2005 Oct; 23(10):993-1002. PubMed ID: 16194976
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhaled Beta2-Agonist Increases Power Output and Glycolysis during Sprinting in Men.
    Kalsen A; Hostrup M; Söderlund K; Karlsson S; Backer V; Bangsbo J
    Med Sci Sports Exerc; 2016 Jan; 48(1):39-48. PubMed ID: 26197029
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-energy phosphate metabolism in the exercising muscle of patients with peripheral arterial disease.
    Schocke M; Esterhammer R; Greiner A
    Vasa; 2008 Aug; 37(3):199-210. PubMed ID: 18690587
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A relationship between impaired fetal growth and reduced muscle glycolysis revealed by 31P magnetic resonance spectroscopy.
    Taylor DJ; Thompson CH; Kemp GJ; Barnes PR; Sanderson AL; Radda GK; Phillips DI
    Diabetologia; 1995 Oct; 38(10):1205-12. PubMed ID: 8690173
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioenergetics and ATP Synthesis during Exercise: Role of Group III/IV Muscle Afferents.
    Broxterman RM; Layec G; Hureau TJ; Morgan DE; Bledsoe AD; Jessop JE; Amann M; Richardson RS
    Med Sci Sports Exerc; 2017 Dec; 49(12):2404-2413. PubMed ID: 28767527
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Skeletal muscle energy metabolism and fatigue during intense exercise in man.
    Hultman E; Greenhaff PL
    Sci Prog; 1991; 75(298 Pt 3-4):361-70. PubMed ID: 1842855
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bioenergetic approach to transfer function of human skeletal muscle.
    Binzoni T; Cerretelli P
    J Appl Physiol (1985); 1994 Oct; 77(4):1784-9. PubMed ID: 7836200
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The maximally accumulated oxygen deficit as an indicator of anaerobic capacity.
    Scott CB; Roby FB; Lohman TG; Bunt JC
    Med Sci Sports Exerc; 1991 May; 23(5):618-24. PubMed ID: 2072841
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Energy metabolism of the untrained muscle of elite runners as observed by 31P magnetic resonance spectroscopy: evidence suggesting a genetic endowment for endurance exercise.
    Park JH; Brown RL; Park CR; Cohn M; Chance B
    Proc Natl Acad Sci U S A; 1988 Dec; 85(23):8780-4. PubMed ID: 3194388
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.