These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 10828393)

  • 1. Degradation of benzyl ether bonds of lignin by ruminal microbes.
    Kajikawa H; Kudo H; Kondo T; Jodai K; Honda Y; Kuwahara M; Watanabe T
    FEMS Microbiol Lett; 2000 Jun; 187(1):15-20. PubMed ID: 10828393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solubilization of lignin by the ruminal anaerobic fungus Neocallimastix patriciarum.
    McSweeney CS; Dulieu A; Katayama Y; Lowry JB
    Appl Environ Microbiol; 1994 Aug; 60(8):2985-9. PubMed ID: 8085834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mixed fungal populations and lignocellulosic tissue degradation in the bovine rumen.
    Akin DE; Rigsby LL
    Appl Environ Microbiol; 1987 Sep; 53(9):1987-95. PubMed ID: 2823705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anaerobic degradation of veratrylglycerol-beta-guaiacyl ether and guaiacoxyacetic acid by mixed rumen bacteria.
    Chen W; Supanwong K; Ohmiya K; Shimizu S; Kawakami H
    Appl Environ Microbiol; 1985 Dec; 50(6):1451-6. PubMed ID: 3841472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microscale analysis of in vitro anaerobic degradation of lignocellulosic wastes by rumen microorganisms.
    Hu ZH; Liu SY; Yue ZB; Yan LF; Yang MT; Yu HQ
    Environ Sci Technol; 2008 Jan; 42(1):276-81. PubMed ID: 18350908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation of polysaccharides and lignin by ruminal bacteria and fungi.
    Akin DE; Benner R
    Appl Environ Microbiol; 1988 May; 54(5):1117-25. PubMed ID: 3389808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of non-phenolic beta-o-4 lignin substructure model compounds by Acinetobacter sp.
    Vasudevan N; Mahadevan A
    Res Microbiol; 1992; 143(3):333-9. PubMed ID: 1448618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of phenolic structures on the degradability of cell walls isolated from newly extended apical internode of tall fescue (Festuca arundinacea Schreb.).
    Vailhé MA; Provan GJ; Scobbie L; Chesson A; Maillot MP; Cornu A; Besle JM
    J Agric Food Chem; 2000 Mar; 48(3):618-23. PubMed ID: 10725124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon Source-Dependent Inducible Metabolism of Veratryl Alcohol and Ferulic Acid in Pseudomonas putida CSV86.
    Mohan K; Phale PS
    Appl Environ Microbiol; 2017 Apr; 83(8):. PubMed ID: 28188206
    [No Abstract]   [Full Text] [Related]  

  • 10. Aromatic ring cleavage of a non-phenolic beta-O-4 lignin model dimer by laccase of Trametes versicolor in the presence of 1-hydroxybenzotriazole.
    Kawai S; Nakagawa M; Ohashi H
    FEBS Lett; 1999 Mar; 446(2-3):355-8. PubMed ID: 10100873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutualistic degradation of the lignin model compound veratrylglycerol-beta-(o-methoxyphenyl) ether by bacteria.
    Crawford RL
    Can J Microbiol; 1975 Oct; 21(10):1654-7. PubMed ID: 1201511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation of lignin and lignin model compound under sulfate reducing condition.
    Pareek S; Azuma JI; Matsui S; Shimizu Y
    Water Sci Technol; 2001; 44(2-3):351-8. PubMed ID: 11548005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissimilation of the lignin model compound veratrylglycerol-beta-(o-methoxyphenyl) ether by Pseudomonas acidovorans: initial transformations.
    Crawford RL; Kirk TK; McCoy E
    Can J Microbiol; 1975 Apr; 21(4):577-9. PubMed ID: 164269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nativity of lignin carbohydrate bonds substantiated by biomimetic synthesis.
    Giummarella N; Balakshin M; Koutaniemi S; Kärkönen A; Lawoko M
    J Exp Bot; 2019 Oct; 70(20):5591-5601. PubMed ID: 31294799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Lignocellulose degrading bacteria and their genes encoding cellulase/hemicellulase in rumen--a review].
    Chen F; Zhu Y; Dong X; Liu L; Huang L; Dai X
    Wei Sheng Wu Xue Bao; 2010 Aug; 50(8):981-7. PubMed ID: 20931863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and characterization of new 5-linked pinoresinol lignin models.
    Yue F; Lu F; Sun R; Ralph J
    Chemistry; 2012 Dec; 18(51):16402-10. PubMed ID: 23109283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective Cleavage of the Aryl Ether Bonds in Lignin for Depolymerization by Acidic Lithium Bromide Molten Salt Hydrate under Mild Conditions.
    Yang X; Li N; Lin X; Pan X; Zhou Y
    J Agric Food Chem; 2016 Nov; 64(44):8379-8387. PubMed ID: 27744686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elucidation of lignin structure through degradative methods: comparison of modified DFRC and thioacidolysis.
    Holtman KM; Chang HM; Jameel H; Kadla JF
    J Agric Food Chem; 2003 Jun; 51(12):3535-40. PubMed ID: 12769520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alkoxyl- and carbon-centered radicals as primary agents for degrading non-phenolic lignin-substructure model compounds.
    Ohashi Y; Uno Y; Amirta R; Watanabe T; Honda Y; Watanabe T
    Org Biomol Chem; 2011 Apr; 9(7):2481-91. PubMed ID: 21327224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation and characterization of an anaerobic dehydrodivanillin-degrading bacterium.
    Chen W; Ohmiya K; Shimizu S; Kawakami H
    Appl Environ Microbiol; 1988 May; 54(5):1254-7. PubMed ID: 3389817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.