BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 10828456)

  • 1. EST comparison indicates 38% of human mRNAs contain possible alternative splice forms.
    Brett D; Hanke J; Lehmann G; Haase S; Delbrück S; Krueger S; Reich J; Bork P
    FEBS Lett; 2000 May; 474(1):83-6. PubMed ID: 10828456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient prediction of alternative splice forms using protein domain homology.
    Hiller M; Backofen R; Heymann S; Busch A; Glaesser TM; Freytag JC
    In Silico Biol; 2004; 4(2):195-208. PubMed ID: 15107023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EASED: Extended Alternatively Spliced EST Database.
    Pospisil H; Herrmann A; Bortfeldt RH; Reich JG
    Nucleic Acids Res; 2004 Jan; 32(Database issue):D70-4. PubMed ID: 14681361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A study of alternative splicing in the pig.
    Nygard AB; Cirera S; Gilchrist MJ; Gorodkin J; Jørgensen CB; Fredholm M
    BMC Res Notes; 2010 May; 3():123. PubMed ID: 20444244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ProSplicer: a database of putative alternative splicing information derived from protein, mRNA and expressed sequence tag sequence data.
    Huang HD; Horng JT; Lee CC; Liu BJ
    Genome Biol; 2003; 4(4):R29. PubMed ID: 12702210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Analysis, identification and correction of some errors of model refseqs appeared in NCBI Human Gene Database by in silico cloning and experimental verification of novel human genes].
    Zhang DL; Ji L; Li YD
    Yi Chuan Xue Bao; 2004 May; 31(5):431-43. PubMed ID: 15478601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ECgene: genome-based EST clustering and gene modeling for alternative splicing.
    Kim N; Shin S; Lee S
    Genome Res; 2005 Apr; 15(4):566-76. PubMed ID: 15805497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A non-EST-based method for exon-skipping prediction.
    Sorek R; Shemesh R; Cohen Y; Basechess O; Ast G; Shamir R
    Genome Res; 2004 Aug; 14(8):1617-23. PubMed ID: 15289480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution of SR protein exonic splicing enhancer motifs in human protein-coding genes.
    Wang J; Smith PJ; Krainer AR; Zhang MQ
    Nucleic Acids Res; 2005; 33(16):5053-62. PubMed ID: 16147989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of expressed sequence tags (ESTs) to human genomic sequences.
    Wolfsberg TG; Landsman D
    Nucleic Acids Res; 1997 Apr; 25(8):1626-32. PubMed ID: 9092672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovery of novel splice forms and functional analysis of cancer-specific alternative splicing in human expressed sequences.
    Xu Q; Lee C
    Nucleic Acids Res; 2003 Oct; 31(19):5635-43. PubMed ID: 14500827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Verification of predicted alternatively spliced Wnt genes reveals two new splice variants (CTNNB1 and LRP5) and altered Axin-1 expression during tumour progression.
    Pospisil H; Herrmann A; Butherus K; Pirson S; Reich JG; Kemmner W
    BMC Genomics; 2006 Jun; 7():148. PubMed ID: 16772034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The architecture of pre-mRNAs affects mechanisms of splice-site pairing.
    Fox-Walsh KL; Dou Y; Lam BJ; Hung SP; Baldi PF; Hertel KJ
    Proc Natl Acad Sci U S A; 2005 Nov; 102(45):16176-81. PubMed ID: 16260721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cis requirements for alternative splicing of the cardiac troponin T pre-mRNA.
    Cooper TA; Cardone MH; Ordahl CP
    Nucleic Acids Res; 1988 Sep; 16(17):8443-65. PubMed ID: 3419923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How prevalent is functional alternative splicing in the human genome?
    Sorek R; Shamir R; Ast G
    Trends Genet; 2004 Feb; 20(2):68-71. PubMed ID: 14746986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of human-specific transcript variants induced by DNA insertions in the human genome.
    Kim DS; Hahn Y
    Bioinformatics; 2011 Jan; 27(1):14-21. PubMed ID: 21037245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical analysis of alternative splice forms using computational methods.
    Boué S; Vingron M; Kriventseva E; Koch I
    Bioinformatics; 2002; 18 Suppl 2():S65-73. PubMed ID: 12385985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alternatively Spliced Homologous Exons Have Ancient Origins and Are Highly Expressed at the Protein Level.
    Abascal F; Ezkurdia I; Rodriguez-Rivas J; Rodriguez JM; del Pozo A; Vázquez J; Valencia A; Tress ML
    PLoS Comput Biol; 2015 Jun; 11(6):e1004325. PubMed ID: 26061177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variation in alternative splicing across human tissues.
    Yeo G; Holste D; Kreiman G; Burge CB
    Genome Biol; 2004; 5(10):R74. PubMed ID: 15461793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of novel splice forms in human and mouse using cross-species approach.
    Kan Z; Castle J; Johnson JM; Tsinoremas NF
    Pac Symp Biocomput; 2004; ():42-53. PubMed ID: 14992491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.