These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 10828708)

  • 1. Activation of Ca2+-activated K+ channels in human myometrium by nitric oxide.
    Shimano M; Nakaya Y; Fukui R; Kamada M; Hamada Y; Maeda K; Aono T
    Gynecol Obstet Invest; 2000; 49(4):249-54. PubMed ID: 10828708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endotoxin-induced L-arginine pathway produces nitric oxide and modulates the Ca2+-activated K+ channel in cultured human dermal papilla cells.
    Nameda Y; Miyoshi H; Tsuchiya K; Nakaya Y; Arase S
    J Invest Dermatol; 1996 Feb; 106(2):342-5. PubMed ID: 8601738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endotoxin-induced nonendothelial nitric oxide activates the Ca(2+)-activated K+ channel in cultured vascular smooth muscle cells.
    Miyoshi H; Nakaya Y
    J Mol Cell Cardiol; 1994 Nov; 26(11):1487-95. PubMed ID: 7534831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Internally applied endotoxin and the activation of BK channels in cerebral artery smooth muscle via a nitric oxide-like pathway.
    Hoang LM; Mathers DA
    Br J Pharmacol; 1998 Jan; 123(1):5-12. PubMed ID: 9484848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of nitric oxide on the Ca2+-activated potassium channels in smooth muscle cells of the human corpus cavernosum.
    Lee SW; Kang TM
    Urol Res; 2001 Oct; 29(5):359-65. PubMed ID: 11762799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitric oxide activates ATP-dependent K+ channels in human eosinophils.
    Schwingshackl A; Moqbel R; Duszyk M
    J Leukoc Biol; 2002 May; 71(5):807-12. PubMed ID: 11994505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of the nitric oxide synthase inhibitor N omega nitro-L-arginine methyl ester on electrical activity and ion channels of mouse pancreatic B cells.
    Krippeit-Drews P; Welker S; Drews G
    Biochem Biophys Res Commun; 1996 Jul; 224(1):199-205. PubMed ID: 8694812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibitor effect of omeprazole in isolated human myometrial smooth muscle.
    Yildirim K; Sarioglu Y; Kaya T; Cetin A; Yildirim S
    Life Sci; 2001 Jun; 69(4):435-42. PubMed ID: 11459434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tonic inhibitory action by nitric oxide on spontaneous mechanical activity in rat proximal colon: involvement of cyclic GMP and apamin-sensitive K+ channels.
    Mulè F; D'Angelo S; Serio R
    Br J Pharmacol; 1999 May; 127(2):514-20. PubMed ID: 10385253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NO-induced relaxation of labouring and non-labouring human myometrium is not mediated by cyclic GMP.
    Buxton IL; Kaiser RA; Malmquist NA; Tichenor S
    Br J Pharmacol; 2001 Sep; 134(1):206-14. PubMed ID: 11522613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonendothelial-derived nitric oxide activates the ATP-sensitive K+ channel of vascular smooth muscle cells.
    Miyoshi H; Nakaya Y; Moritoki H
    FEBS Lett; 1994 May; 345(1):47-9. PubMed ID: 8194598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of an inwardly rectifying K+ channel by nitric oxide in cultured human proximal tubule cells.
    Nakamura K; Hirano J; Kubokawa M
    Am J Physiol Renal Physiol; 2004 Sep; 287(3):F411-7. PubMed ID: 15140759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of K+ channels and ouabain-sensitive mechanisms to the endothelium-dependent relaxations of horse penile small arteries.
    Prieto D; Simonsen U; Hernández M; García-Sacristán A
    Br J Pharmacol; 1998 Apr; 123(8):1609-20. PubMed ID: 9605568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitric oxide (NO)-induced activation of large conductance Ca2+-dependent K+ channels (BK(Ca)) in smooth muscle cells isolated from the rat mesenteric artery.
    Mistry DK; Garland CJ
    Br J Pharmacol; 1998 Jul; 124(6):1131-40. PubMed ID: 9720783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitric oxide induces [Ca2+]i oscillations in pituitary GH3 cells: involvement of IDR and ERG K+ currents.
    Secondo A; Pannaccione A; Cataldi M; Sirabella R; Formisano L; Di Renzo G; Annunziato L
    Am J Physiol Cell Physiol; 2006 Jan; 290(1):C233-43. PubMed ID: 16207796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Excitatory response of rabbit myometrium to nitric oxide in vitro.
    Nakanishi H; Matsuoka I; Ono T; Okawa T; Katahira K; Nakahata N
    Res Commun Mol Pathol Pharmacol; 1996 May; 92(2):211-24. PubMed ID: 8774074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relaxation by bradykinin in porcine ciliary artery. Role of nitric oxide and K(+)-channels.
    Zhu P; Bény JL; Flammer J; Lüscher TF; Haefliger IO
    Invest Ophthalmol Vis Sci; 1997 Aug; 38(9):1761-7. PubMed ID: 9286264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Roles of endogenous nitric oxide synthase inhibitors and endothelin-1 for regulating myometrial contractions during gestation in the rat.
    Momohara Y; Sakamoto S; Obayashi S; Aso T; Goto M; Azuma H
    Mol Hum Reprod; 2004 Jul; 10(7):505-12. PubMed ID: 15155819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of a selective inhibition of potassium channels on the relaxation induced by nitric oxide in the human pregnant myometrium.
    Modzelewska B; Kleszczewski T; Kostrzewska A
    Cell Mol Biol Lett; 2003; 8(1):69-75. PubMed ID: 12655359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preeclampsia: evidence for impaired shear stress-mediated nitric oxide release in uterine circulation.
    Kublickiene KR; Lindblom B; Krüger K; Nisell H
    Am J Obstet Gynecol; 2000 Jul; 183(1):160-6. PubMed ID: 10920325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.