These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 1082887)

  • 1. Exodus of 42K+ and 86Rb+ from rat thymic and human blood lymphocytes exposed to phytohemagglutinin.
    Segel GB; Gordon BR; Lichtman MA; Hollander MM; Klemperer MR
    J Cell Physiol; 1976 Mar; 87(3):337-43. PubMed ID: 1082887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potasssium transport in human blood lymphocytes treated with phytohemagglutinin.
    Segel GB; Lichtman MA
    J Clin Invest; 1976 Dec; 58(6):1358-69. PubMed ID: 993349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A rapid phytohemagglutinin induced alteration in lymphocyte potassium permeability.
    Segel GB; Hollander MM; Gordon BR; Klemperer MR; Lichtman MA
    J Cell Physiol; 1975 Oct; 86(2 PT 2 SUPPL 1):327-35. PubMed ID: 1238407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Net K+(86Rb+) uptake of human lymphocytes following phytohemagglutinin stimulation].
    Rytter M; Glander HJ; Haustein UF; Mothes H
    Allerg Immunol (Leipz); 1982; 28(4):243-50. PubMed ID: 6219559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction of 86Rb fluxes by Ca2+ and volume changes in thymocytes and their isolated membranes.
    Grinstein S; Cohen S; Sarkadi B; Rothstein A
    J Cell Physiol; 1983 Sep; 116(3):352-62. PubMed ID: 6604061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decreased membrane potassium permeability and transport in human chronic leukemic and tonsillar lymphocytes.
    Segel GB; Lichtman MA
    J Cell Physiol; 1977 Nov; 93(2):277-84. PubMed ID: 304061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human lymphocyte potassium content during the initiation of phytohemagglutinin-induced mitogenesis.
    Segel GB; Lichtman MA; Hollander MM; Gordon BR; Klemperer MR
    J Cell Physiol; 1976 May; 88(1):43-8. PubMed ID: 1262405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of rubidium-86 and potassium-42 fluxes in rat aorta.
    Smith JM; Sanchez AA; Jones AW
    Blood Vessels; 1986; 23(6):297-309. PubMed ID: 3790746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cation fluxes and volume regulation by human lymphocytes.
    Bui AH; Wiley JS
    J Cell Physiol; 1981 Jul; 108(1):47-54. PubMed ID: 7263767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased 86Rb+ efflux from perfused rat hearts exposed to alpha 1-adrenergic stimulation.
    Hanem S; Skomedal T; Bjørn-Osnes J
    J Cardiovasc Pharmacol; 1993 Sep; 22(3):350-5. PubMed ID: 7504123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lymphocyte response to phytohemagglutinin: intracellular volume and intracellular [K+].
    Holian A; Deutsch CJ; Holian SK; Daniele RP; Wilson DF
    J Cell Physiol; 1979 Jan; 98(1):137-44. PubMed ID: 762191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous and agonist-induced 86Rb efflux from rabbit aortic smooth muscle cells in culture: a comparison with fresh tissue.
    Martin W; Gordon JL
    J Cell Physiol; 1983 Apr; 115(1):53-60. PubMed ID: 6833409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The potassium permeability of pancreatic islet cells: mechanisms of control and influence on insulin release.
    Henquin JC
    Horm Metab Res Suppl; 1980; Suppl 10():66-73. PubMed ID: 7005065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accumulation of 42K and 86Rb in the organs of the rat.
    Bartha J; Wüstenberg PW
    Acta Physiol Acad Sci Hung; 1975; 46(1):1-8. PubMed ID: 1235452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Membrane potential, permeability coefficients and the ratio of the influx/efflux rates for alkaline cations across the muscle fiber membrane of the frog in a bi-ionic system].
    Vereninov AA; Toropova FV
    Tsitologiia; 1983 Mar; 25(3):297-305. PubMed ID: 6304955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of calcium chelation on lymphocyte monovalent cation permeability, transport and concentration.
    Quastel MR; Segel GB; Lichtman MA
    J Cell Physiol; 1981 May; 107(2):165-70. PubMed ID: 6788784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The transport and distribution of monovalent cations during the blast transformation of human peripheral blood lymphocytes activated by phytohemagglutinin].
    Vereninov AA; Gusev EV; Kazakova OM; Klimenko EM; Marakhova II; Osipov VV; Toropova FV
    Tsitologiia; 1991; 33(11):78-93. PubMed ID: 1726377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potassium metabolism in seawater teleosts. I. The use of 86Rb as a tracer for potassium.
    Sanders MJ; Kirschner LB
    J Exp Biol; 1983 May; 104():15-28. PubMed ID: 6875469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Modeling the 42K and 86Rb distribution on the animal model of the rat].
    Böttcher M; Neumann J; Esther G; Unterspann S
    Radiobiol Radiother (Berl); 1982; 23(3):339-43. PubMed ID: 7178468
    [No Abstract]   [Full Text] [Related]  

  • 20. Characterization of Na(+)-K+ homeostasis of cultured human skin fibroblasts in the presence and absence of fetal bovine serum.
    Hopp L; Lasker N; Bamforth R; Aviv A
    J Cell Physiol; 1992 May; 151(2):427-32. PubMed ID: 1572913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.