These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 10829241)

  • 1. Atherogenetically relevant cells support continuous growth of Chlamydia pneumoniae.
    Maass M; Gieffers J; Solbach W
    Herz; 2000 Mar; 25(2):68-72. PubMed ID: 10829241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transmission of Chlamydia pneumoniae infection from blood monocytes to vascular cells in a novel transendothelial migration model.
    Rupp J; Koch M; van Zandbergen G; Solbach W; Brandt E; Maass M
    FEMS Microbiol Lett; 2005 Jan; 242(2):203-8. PubMed ID: 15621438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro infection and pathogenesis of Chlamydia pneumoniae in endovascular cells.
    Quinn TC; Gaydos CA
    Am Heart J; 1999 Nov; 138(5 Pt 2):S507-11. PubMed ID: 10539860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Replication of Chlamydia pneumoniae in vitro in human macrophages, endothelial cells, and aortic artery smooth muscle cells.
    Gaydos CA; Summersgill JT; Sahney NN; Ramirez JA; Quinn TC
    Infect Immun; 1996 May; 64(5):1614-20. PubMed ID: 8613369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro susceptibility of human vascular wall cells to infection with Chlamydia pneumoniae.
    Godzik KL; O'Brien ER; Wang SK; Kuo CC
    J Clin Microbiol; 1995 Sep; 33(9):2411-4. PubMed ID: 7494038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chlamydia pneumoniae in atherosclerotic and nonatherosclerotic tissue.
    Ouchi K; Fujii B; Kudo S; Shirai M; Yamashita K; Gondo T; Ishihara T; Ito H; Nakazawa T
    J Infect Dis; 2000 Jun; 181 Suppl 3():S441-3. PubMed ID: 10839733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chlamydia pneumoniae facilitates monocyte adhesion to endothelial and smooth muscle cells.
    Kaul R; Wenman WM
    Microb Pathog; 2001 Mar; 30(3):149-55. PubMed ID: 11273740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endovascular presence of viable Chlamydia pneumoniae is a common phenomenon in coronary artery disease.
    Maass M; Bartels C; Engel PM; Mamat U; Sievers HH
    J Am Coll Cardiol; 1998 Mar; 31(4):827-32. PubMed ID: 9525555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth in vascular cells and cytokine production by Chlamydia pneumoniae.
    Gaydos CA
    J Infect Dis; 2000 Jun; 181 Suppl 3():S473-8. PubMed ID: 10839742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chlamydia pneumoniae infection in circulating human monocytes is refractory to antibiotic treatment.
    Gieffers J; Füllgraf H; Jahn J; Klinger M; Dalhoff K; Katus HA; Solbach W; Maass M
    Circulation; 2001 Jan; 103(3):351-6. PubMed ID: 11157684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Chlamydia pneumoniae and cardiovascular diseases].
    Rajtar R; Malczewska-Malec M; Kloch M; Kolasińska-Kloch W
    Przegl Lek; 2004; 61(3):165-9. PubMed ID: 15518326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Persistence of Chlamydia pneumoniae in human arteriosclerotic plaque substance. Evidence and consequences].
    Maass M
    Herz; 1998 May; 23(3):178-84. PubMed ID: 9646099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chlamydia pneumoniae and atherosclerosis.
    Ouchi K
    Jpn J Infect Dis; 1999 Dec; 52(6):223-7. PubMed ID: 10738358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative analysis of the growth and biological activity of a respiratory and atheroma isolate of Chlamydia pneumoniae reveals strain-dependent differences in inflammatory activity and innate immune evasion.
    He X; Liang Y; LaValley MP; Lai J; Ingalls RR
    BMC Microbiol; 2015 Oct; 15():228. PubMed ID: 26494400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chlamydophila pneumoniae. Mechanisms of target cell infection and activation.
    Krüll M; Maass M; Suttorp N; Rupp J
    Thromb Haemost; 2005 Aug; 94(2):319-26. PubMed ID: 16113821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissemination of Chlamydia pneumoniae to the vessel wall in atherosclerosis.
    Hirono S; Pierce GN
    Mol Cell Biochem; 2003 Apr; 246(1-2):91-5. PubMed ID: 12841348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chlamydia pneumoniae in an ex vivo human artery culture model.
    Poppert S; Schlaupitz K; Marre R; Voisard R; Roessler W; Weckermann D; Weingärtner K; Essig A
    Atherosclerosis; 2006 Jul; 187(1):50-6. PubMed ID: 16202418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions of Chlamydia pneumoniae with human endothelial cells.
    Summersgill JT; Molestina RE; Miller RD; Ramirez JA
    J Infect Dis; 2000 Jun; 181 Suppl 3():S479-82. PubMed ID: 10839743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chlamydia pneumoniae infection of human endothelial cells induces proliferation of smooth muscle cells via an endothelial cell-derived soluble factor(s).
    Coombes BK; Mahony JB
    Infect Immun; 1999 Jun; 67(6):2909-15. PubMed ID: 10338498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endovascular presence of Chlamydia pneumoniae DNA is a generalized phenomenon in atherosclerotic vascular disease.
    Maass M; Bartels C; Krüger S; Krause E; Engel PM; Dalhoff K
    Atherosclerosis; 1998 Oct; 140 Suppl 1():S25-30. PubMed ID: 9859922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.