These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 10829397)

  • 1. Can vortices in the flow across mechanical heart valves contribute to cavitation?
    Avrahami I; Rosenfeld M; Einav S; Eichler M; Reul H
    Med Biol Eng Comput; 2000 Jan; 38(1):93-7. PubMed ID: 10829397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of vortices in cavitation formation in the flow across a mechanical heart valve.
    Li CP; Lu PC; Liu JS; Lo CW; Hwang NH
    J Heart Valve Dis; 2008 Jul; 17(4):435-45. PubMed ID: 18751474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A detailed fluid mechanics study of tilting disk mechanical heart valve closure and the implications to blood damage.
    Manning KB; Herbertson LH; Fontaine AA; Deutsch S
    J Biomech Eng; 2008 Aug; 130(4):041001. PubMed ID: 18601443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cavitation dynamics of medtronic hall mechanical heart valve prosthesis: fluid squeezing effect.
    Lee CS; Chandran KB; Chen LD
    J Biomech Eng; 1996 Feb; 118(1):97-105. PubMed ID: 8833080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A squeeze flow phenomenon at the closing of a bileaflet mechanical heart valve prosthesis.
    Bluestein D; Einav S; Hwang NH
    J Biomech; 1994 Nov; 27(11):1369-78. PubMed ID: 7798287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitral mechanical heart valves: in vitro studies of their closure, vortex and microbubble formation with possible medical implications.
    Milo S; Rambod E; Gutfinger C; Gharib M
    Eur J Cardiothorac Surg; 2003 Sep; 24(3):364-70. PubMed ID: 12965306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of vortices in cavitation formation in the flow at the closure of a bileaflet mitral mechanical heart valve.
    Li CP; Chen SF; Lo CW; Lu PC
    J Artif Organs; 2012 Mar; 15(1):57-64. PubMed ID: 22015913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Instantaneous back flow through peripheral clearance of Medtronic Hall tilting disc valve at the moment of closure.
    Lee CS; Chandran KB
    Ann Biomed Eng; 1994; 22(4):371-80. PubMed ID: 7998682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cavitation phenomenon in monoleaflet mechanical heart valves with electrohydraulic total artificial heart.
    Lee H; Taenaka Y; Kitamura S
    Int J Artif Organs; 2004 Sep; 27(9):779-86. PubMed ID: 15521218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical valve closing dynamics: relationship between velocity of closing, pressure transients, and cavitation initiation.
    Chandran KB; Aluri S
    Ann Biomed Eng; 1997; 25(6):926-38. PubMed ID: 9395039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pressure field in the vicinity of mechanical valve occluders at the instant of valve closure: correlation with cavitation initiation.
    Chandran KB; Lee CS; Chen LD
    J Heart Valve Dis; 1994 Apr; 3 Suppl 1():S65-75; discussion S75-6. PubMed ID: 8061871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of vortices in growth of microbubbles at mitral mechanical heart valve closure.
    Rambod E; Beizai M; Sahn DJ; Gharib M
    Ann Biomed Eng; 2007 Jul; 35(7):1131-45. PubMed ID: 17404890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of mechanical heart valve cavitation: investigation using a tilting disk valve model.
    He Z; Xi B; Zhu K; Hwang NH
    J Heart Valve Dis; 2001 Sep; 10(5):666-74. PubMed ID: 11603607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrodynamic characteristics of bileaflet mechanical heart valves in an artificial heart: cavitation and closing velocity.
    Lee H; Homma A; Taenaka Y
    Artif Organs; 2007 Jul; 31(7):532-7. PubMed ID: 17584477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cavitation phenomena in mechanical heart valves: studied by using a physical impinging rod system.
    Lo CW; Chen SF; Li CP; Lu PC
    Ann Biomed Eng; 2010 Oct; 38(10):3162-72. PubMed ID: 20490686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unsteady effects on the flow across tilting disk valves.
    Rosenfeld M; Avrahami I; Einav S
    J Biomech Eng; 2002 Feb; 124(1):21-9. PubMed ID: 11871601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Causes and formation of cavitation in mechanical heart valves.
    Graf T; Reul H; Detlefs C; Wilmes R; Rau G
    J Heart Valve Dis; 1994 Apr; 3 Suppl 1():S49-64. PubMed ID: 8061870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mean velocity and Reynolds stress measurements in the regurgitant jets of tilting disk heart valves in an artificial heart environment.
    Maymir JC; Deutsch S; Meyer RS; Geselowitz DB; Tarbell JM
    Ann Biomed Eng; 1998; 26(1):146-56. PubMed ID: 10355559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitral heart valve cavitation in an artificial heart environment.
    Sneckenberger DS; Stinebring DR; Deutsch S; Geselowitz DB; Tarbell JM
    J Heart Valve Dis; 1996 Mar; 5(2):216-27. PubMed ID: 8665017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of tip angle on cavitation potential during closure of a bileaflet prosthesis model.
    Zhang P; Yeo JH; Qian P; Hwang NH
    J Heart Valve Dis; 2007 Jul; 16(4):430-9. PubMed ID: 17702370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.