These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 10829620)

  • 1. State-of-the-art surface acoustic wave linear motor and its future applications.
    Kurosawa MK
    Ultrasonics; 2000 Mar; 38(1-8):15-9. PubMed ID: 10829620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elastic contact conditions to optimize friction drive of surface acoustic wave motor.
    Kuribayashi Kurosawa M; Takahashi M; Higuchi T
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(5):1229-37. PubMed ID: 18244284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elastic friction drive of surface acoustic wave motor.
    Kurosawa MK; Itoh H; Asai K
    Ultrasonics; 2003 Jun; 41(4):271-5. PubMed ID: 12782258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimum contact conditions for miniaturized surface acoustic wave linear motor.
    Takasaki M; Kurosawa MK; Higuchi T
    Ultrasonics; 2000 Mar; 38(1-8):51-3. PubMed ID: 10829627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A traveling-wave, modified ring linear piezoelectric microactuator with enclosed piezoelectric elements--the "scream" actuator.
    Friend J; Nakamura K; Ueha S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Aug; 52(8):1343-53. PubMed ID: 16245603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of surface acoustic wave motor with spherical slider.
    Morita T; Kurosawa MK; Higuchi T
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(4):929-34. PubMed ID: 18238497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A standing wave-type noncontact linear ultrasonic motor.
    Hu J; Li G; Chan HL; Choy CL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 May; 48(3):699-708. PubMed ID: 11381693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical analysis of wave generation and propagation in a focused surface acoustic wave device for potential microfluidics applications.
    Sankaranarayanan SK; Bhethanabotla VR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Mar; 56(3):631-43. PubMed ID: 19411221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-Voltage High-Frequency Lamb-Wave-Driven Micromotors.
    Wang Z; Wei W; Zhang M; Duan X; Li Q; Chen X; Yang Q; Pang W
    Micromachines (Basel); 2024 May; 15(6):. PubMed ID: 38930686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Friction drive of an SAW motor. Part V: design criteria.
    Shigematsu T; Kurosawa MK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Oct; 55(10):2288-97. PubMed ID: 18986876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Friction drive of an SAW motor. Part II: analyses.
    Shigematsu T; Kurosawa MK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Sep; 55(9):2016-24. PubMed ID: 18986897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanometer stepping drives of surface acoustic wave motor.
    Shigematsu T; Kurosawa MK; Asai K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Apr; 50(4):376-85. PubMed ID: 12744393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A compact linear-rotary impact motor based on a single piezoelectric tube stator with two independent electrodes.
    Han L; Yu L; Pan C; Jiang Y
    Rev Sci Instrum; 2019 Nov; 90(11):115004. PubMed ID: 31779451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Standing wave bi-directional linearly moving ultrasonic motor.
    He S; Chen W; Tao X; Chen Z
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(5):1133-9. PubMed ID: 18244271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of a Short-Beam Linear Traveling-Wave Piezoelectric Motor.
    Ting Y; Yu CH; Lin JH; Johar T; Wang CW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Aug; 68(8):2815-2823. PubMed ID: 33900912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Friction drive of an SAW Motor. Part I: measurements.
    Shigematsu T; Kurosawa MK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Sep; 55(9):2005-15. PubMed ID: 18986896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A cylindrical traveling wave ultrasonic motor using a circumferential composite transducer.
    Liu Y; Liu J; Chen W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Nov; 58(11):2397-404. PubMed ID: 22083773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Driving mechanism, design, fabrication process, and experiments of a cylindrical ultrasonic linear microactuator.
    Wang S; Sun D; Sakurai J; Choi K; Hata S; Shimokohbe A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jan; 58(1):168-77. PubMed ID: 21244984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance improvement of smooth impact drive mechanism at low voltage utilizing ultrasonic friction reduction.
    Cheng T; Lu X; Zhao H; Chen D; He P; Wang L; Zhao X
    Rev Sci Instrum; 2016 Aug; 87(8):085007. PubMed ID: 27587153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of Linear Traveling Waves in Piezoelectric Plates in Air and Liquid.
    Díaz-Molina A; Ruiz-Díez V; Hernando-García J; Ababneh A; Seidel H; Sánchez-Rojas JL
    Micromachines (Basel); 2019 Apr; 10(5):. PubMed ID: 31035556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.