These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 10829640)

  • 1. Simulation of electromechanical coupling coefficient by modified modal frequency spectrum method including the electrode effect.
    Zhang Y; Wang Z; Cheeke JD
    Ultrasonics; 2000 Mar; 38(1-8):114-7. PubMed ID: 10829640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resonant spectrum method to characterize piezoelectric films in composite resonators.
    Zhang Y; Wang Z; Cheeke JD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Mar; 50(3):321-33. PubMed ID: 12699166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of electrodes on the effective electromechanical coupling coefficient distributions of high-overtone bulk acoustic resonator.
    Liu M; Li J; Wang C; Li J; Ma J
    Ultrasonics; 2015 Feb; 56():566-74. PubMed ID: 25459064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of electromechanical coupling coefficients of piezoelectric films using composite resonators.
    Wang Z; Zhang Y; Cheeke JN
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(5):1327-30. PubMed ID: 18244326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable Electromechanical Coupling Coefficient of a Laterally Excited Bulk Wave Resonator with Composite Piezoelectric Film.
    Xie Y; Liu Y; Liu J; Wang L; Liu W; Soon BW; Cai Y; Sun C
    Micromachines (Basel); 2022 Apr; 13(4):. PubMed ID: 35457945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electromechanical coupling coefficient k15 of polycrystalline ZnO films with the c-axes lie in the substrate plane.
    Yanagitani T; Mishima N; Matsukawa M; Watanabe Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Apr; 54(4):701-4. PubMed ID: 17441579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lateral Field Excitation of Thickness Longitudinal Mode and Shear Mode With ZnO Based on Solidly Mounted Resonator.
    Meng SH; Huang AC; Chen YC; Yuan C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 May; 66(5):1014-1021. PubMed ID: 30843829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resonance Spectrum Characteristics of Effective Electromechanical Coupling Coefficient of High-Overtone Bulk Acoustic Resonator.
    Li J; Liu M; Wang C
    Micromachines (Basel); 2016 Sep; 7(9):. PubMed ID: 30404332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of the performance of the sandwich piezoelectric ultrasonic transducer.
    Shuyu L
    J Acoust Soc Am; 2004 Jan; 115(1):182-6. PubMed ID: 14759009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of electromechanical coupling factors of low Q piezoelectric resonators operating in stiffened modes.
    San Emeterio JL
    IEEE Trans Ultrason Ferroelectr Freq Control; 1997; 44(1):108-13. PubMed ID: 18244108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wave Electromechanical Coupling Factor for the Guided Waves in Piezoelectric Composites.
    Fan Y; Collet M; Ichchou M; Bareille O; Li L
    Materials (Basel); 2018 Aug; 11(8):. PubMed ID: 30103478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication and modeling of high-frequency PZT composite thick film membrane resonators.
    Duval FF; Dorey RA; Wright RW; Huang Z; Whatmore RW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Oct; 51(10):1255-61. PubMed ID: 15553509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and Optimization of SHF Composite FBAR Resonators.
    Pillai G; Zope AA; Tsai JM; Li SS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Dec; 64(12):1864-1873. PubMed ID: 28981414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of electric load impedances on the performance of sandwich piezoelectric transducers.
    Lin S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Oct; 51(10):1280-6. PubMed ID: 15553512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation of a Love wave device with ZnO nanorods for high mass sensitivity.
    Trivedi S; Nemade HB
    Ultrasonics; 2018 Mar; 84():150-161. PubMed ID: 29128738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the optimization of the effective electromechanical coupling coefficients of a piezoelectric body.
    Aronov B
    J Acoust Soc Am; 2003 Aug; 114(2):792-800. PubMed ID: 12942962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Streptavidin Modified ZnO Film Bulk Acoustic Resonator for Detection of Tumor Marker Mucin 1.
    Zheng D; Guo P; Xiong J; Wang S
    Nanoscale Res Lett; 2016 Dec; 11(1):396. PubMed ID: 27624339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electromechanical coupling constant extraction of thin-film piezoelectric materials using a bulk acoustic wave resonator.
    Naik RS; Lutsky JJ; Reif R; Sodini CG
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(1):257-63. PubMed ID: 18244177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrode effects on frequency spectra and electromechanical coupling factors of HBAR.
    Zhang H; Wang Z; Zhang SY
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Jun; 52(6):1020-5. PubMed ID: 16118983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Effects of a Coated Material Layer on High-Overtone Bulk Acoustic Resonator and its Possible Applications.
    Kongbrailatpam SS; Goud JP; Raju KCJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Apr; 68(4):1253-1260. PubMed ID: 32956056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.