These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 10829673)

  • 21. Self-demodulation of high-frequency ultrasound.
    Vos HJ; Goertz DE; de Jong N
    J Acoust Soc Am; 2010 Mar; 127(3):1208-17. PubMed ID: 20329819
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Numerical solution of non-linear dual-phase-lag bioheat transfer equation within skin tissues.
    Kumar D; Kumar P; Rai KN
    Math Biosci; 2017 Nov; 293():56-63. PubMed ID: 28859910
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simulation of non-linear acoustic field and thermal pattern of phased-array high-intensity focused ultrasound (HIFU).
    Wang M; Zhou Y
    Int J Hyperthermia; 2016 Aug; 32(5):569-82. PubMed ID: 27145871
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling the thermo-acoustic effects of thermal-dependent speed of sound and acoustic absorption of biological tissues during focused ultrasound hyperthermia.
    López-Haro SA; Gutiérrez MI; Vera A; Leija L
    J Med Ultrason (2001); 2015 Oct; 42(4):489-98. PubMed ID: 26576973
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bio-acoustic thermal lensing and nonlinear propagation in focused ultrasound surgery using large focal spots: a parametric study.
    Connor CW; Hynynen K
    Phys Med Biol; 2002 Jun; 47(11):1911-28. PubMed ID: 12108775
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A nonlinear propagation model-based phase calibration technique for membrane hydrophones.
    Cooling MP; Humphrey VF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jan; 55(1):84-93. PubMed ID: 18334316
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Theoretical model of internally cooled interstitial ultrasound applicators for thermal therapy.
    Tyréus PD; Diederich CJ
    Phys Med Biol; 2002 Apr; 47(7):1073-89. PubMed ID: 11996056
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of two theoretical models for predicting non-linear propagation in medical ultrasound fields.
    Bacon DR; Baker AC
    Phys Med Biol; 1989 Nov; 34(11):1633-43. PubMed ID: 2685835
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Temperature elevation by HIFU in ex vivo porcine muscle: MRI measurement and simulation study.
    Solovchuk MA; Hwang SC; Chang H; Thiriet M; Sheu TW
    Med Phys; 2014 May; 41(5):052903. PubMed ID: 24784403
    [TBL] [Abstract][Full Text] [Related]  

  • 30. New approaches to nonlinear diffractive field propagation.
    Christopher PT; Parker KJ
    J Acoust Soc Am; 1991 Jul; 90(1):488-99. PubMed ID: 1880298
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Finite element simulation of nonlinear wave propagation in thermoviscous fluids including dissipation.
    Hoffelner J; Landes H; Kaltenbacher M; Lerch R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 May; 48(3):779-86. PubMed ID: 11381703
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Time-domain modeling of nonlinear distortion of pulsed finite amplitude sound beams.
    Remenieras JP; Bou Matar O; Labat V; Patat F
    Ultrasonics; 2000 Mar; 38(1-8):305-11. PubMed ID: 10829679
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A modeling approach to predict acoustic nonlinear field generated by a transmitter with an aluminum lens.
    Fan T; Liu Z; Chen T; Li F; Zhang D
    Med Phys; 2011 Sep; 38(9):5033-9. PubMed ID: 21978047
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 3D conformal MRI-controlled transurethral ultrasound prostate therapy: validation of numerical simulations and demonstration in tissue-mimicking gel phantoms.
    Burtnyk M; N'Djin WA; Kobelevskiy I; Bronskill M; Chopra R
    Phys Med Biol; 2010 Nov; 55(22):6817-39. PubMed ID: 21030751
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nonlinear acoustic wave equations with fractional loss operators.
    Prieur F; Holm S
    J Acoust Soc Am; 2011 Sep; 130(3):1125-32. PubMed ID: 21895055
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Numerical analysis of thermal response of tissues subjected to high intensity focused ultrasound.
    Gupta P; Srivastava A
    Int J Hyperthermia; 2018; 35(1):419-434. PubMed ID: 30307345
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nonlinear acoustic properties of ex vivo bovine liver and the effects of temperature and denaturation.
    Jackson EJ; Coussios CC; Cleveland RO
    Phys Med Biol; 2014 Jun; 59(12):3223-38. PubMed ID: 24862475
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exploiting nonlinear wave propagation to improve the precision of ultrasonic flow meters.
    Massaad J; van Neer PLMJ; van Willigen DM; de Jong N; Pertijs MAP; Verweij MD
    Ultrasonics; 2021 Sep; 116():106476. PubMed ID: 34098419
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Temperature elevations computed for three-layer and four-layer obstetrical tissue models in nonlinear and linear ultrasonic propagation cases.
    Wójcik J; Filipczyński L; Kujawska T
    Ultrasound Med Biol; 1999 Feb; 25(2):259-67. PubMed ID: 10320315
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Finite volume analysis of temperature effects induced by active MRI implants: 2. Defects on active MRI implants causing hot spots.
    Busch MH; Vollmann W; Grönemeyer DH
    Biomed Eng Online; 2006 May; 5():35. PubMed ID: 16729878
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.