These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 10829679)

  • 1. Time-domain modeling of nonlinear distortion of pulsed finite amplitude sound beams.
    Remenieras JP; Bou Matar O; Labat V; Patat F
    Ultrasonics; 2000 Mar; 38(1-8):305-11. PubMed ID: 10829679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling of pulsed finite-amplitude focused sound beams in time domain.
    Tavakkoli J; Cathignol D; Souchon R; Sapozhnikov OA
    J Acoust Soc Am; 1998 Oct; 104(4):2061-72. PubMed ID: 10491689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the propagation of nonlinear three-dimensional acoustic beams in inhomogeneous media.
    Jing Y; Cleveland RO
    J Acoust Soc Am; 2007 Sep; 122(3):1352. PubMed ID: 17927398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analytical method for describing the paraxial region of finite amplitude sound beams.
    Hamilton MF; Khokhlova VA; Rudenko OV
    J Acoust Soc Am; 1997 Mar; 101(3):1298-308. PubMed ID: 9069621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Harmonic propagation of finite amplitude sound beams: experimental determination of the nonlinearity parameter B/A.
    Labat V; Remenieras JP; Matar OB; Ouahabi A; Patat F
    Ultrasonics; 2000 Mar; 38(1-8):292-6. PubMed ID: 10829676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear propagation in ultrasonic fields: measurements, modelling and harmonic imaging.
    Humphrey VF
    Ultrasonics; 2000 Mar; 38(1-8):267-72. PubMed ID: 10829672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian.
    Treeby BE; Cox BT
    J Acoust Soc Am; 2010 May; 127(5):2741-48. PubMed ID: 21117722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time domain simulation of nonlinear acoustic beams generated by rectangular pistons with application to harmonic imaging.
    Yang X; Cleveland RO
    J Acoust Soc Am; 2005 Jan; 117(1):113-23. PubMed ID: 15704404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling of nonlinear ultrasound propagation in tissue from array transducers.
    Zemp RJ; Tavakkoli J; Cobbold RS
    J Acoust Soc Am; 2003 Jan; 113(1):139-52. PubMed ID: 12558254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of nonlinear medium parameter B/A using model assisted variable-length measurement approach.
    Kujawska T; Nowicki A; Lewin PA
    Ultrasonics; 2011 Dec; 51(8):997-1005. PubMed ID: 21722932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling of finite-amplitude sound beams: second order fields generated by a parametric loudspeaker.
    Yang J; Sha K; Gan WS; Tian J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Apr; 52(4):610-8. PubMed ID: 16060510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite element simulation of nonlinear wave propagation in thermoviscous fluids including dissipation.
    Hoffelner J; Landes H; Kaltenbacher M; Lerch R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 May; 48(3):779-86. PubMed ID: 11381703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A more fundamental approach to the derivation of nonlinear acoustic wave equations with fractional loss operators (L).
    Prieur F; Vilenskiy G; Holm S
    J Acoust Soc Am; 2012 Oct; 132(4):2169-72. PubMed ID: 23039412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transducer characterization from pressure amplitude distribution measurements using a Kalman filter as parameter estimation algorithm.
    Linssen FM; Hoeks AP
    Ultrason Imaging; 1990 Oct; 12(4):309-23. PubMed ID: 2256230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Propagation of finite amplitude sound through turbulence: modeling with geometrical acoustics and the parabolic approximation.
    Blanc-Benon P; Lipkens B; Dallois L; Hamilton MF; Blackstock DT
    J Acoust Soc Am; 2002 Jan; 111(1 Pt 2):487-98. PubMed ID: 11837954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A heterogeneous nonlinear attenuating full-wave model of ultrasound.
    Pinton GF; Dahl J; Rosenzweig S; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Mar; 56(3):474-88. PubMed ID: 19411208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A three-dimensional parabolic equation model of sound propagation using higher-order operator splitting and Padé approximants.
    Lin YT; Collis JM; Duda TF
    J Acoust Soc Am; 2012 Nov; 132(5):EL364-70. PubMed ID: 23145696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling of an electrohydraulic lithotripter with the KZK equation.
    Averkiou MA; Cleveland RO
    J Acoust Soc Am; 1999 Jul; 106(1):102-12. PubMed ID: 10420620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wave envelopes method for description of nonlinear acoustic wave propagation.
    Wójcik J; Nowicki A; Lewin PA; Bloomfield PE; Kujawska T; Filipczyński L
    Ultrasonics; 2006 Jul; 44(3):310-29. PubMed ID: 16780911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear shear wave interaction in soft solids.
    Jacob X; Catheline S; Gennisson JL; Barrière C; Royer D; Fink M
    J Acoust Soc Am; 2007 Oct; 122(4):1917-26. PubMed ID: 17902828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.