These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
10. Determination of nonlinear medium parameter B/A using model assisted variable-length measurement approach. Kujawska T; Nowicki A; Lewin PA Ultrasonics; 2011 Dec; 51(8):997-1005. PubMed ID: 21722932 [TBL] [Abstract][Full Text] [Related]
11. Modeling of finite-amplitude sound beams: second order fields generated by a parametric loudspeaker. Yang J; Sha K; Gan WS; Tian J IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Apr; 52(4):610-8. PubMed ID: 16060510 [TBL] [Abstract][Full Text] [Related]
12. Finite element simulation of nonlinear wave propagation in thermoviscous fluids including dissipation. Hoffelner J; Landes H; Kaltenbacher M; Lerch R IEEE Trans Ultrason Ferroelectr Freq Control; 2001 May; 48(3):779-86. PubMed ID: 11381703 [TBL] [Abstract][Full Text] [Related]
13. A more fundamental approach to the derivation of nonlinear acoustic wave equations with fractional loss operators (L). Prieur F; Vilenskiy G; Holm S J Acoust Soc Am; 2012 Oct; 132(4):2169-72. PubMed ID: 23039412 [TBL] [Abstract][Full Text] [Related]
14. Transducer characterization from pressure amplitude distribution measurements using a Kalman filter as parameter estimation algorithm. Linssen FM; Hoeks AP Ultrason Imaging; 1990 Oct; 12(4):309-23. PubMed ID: 2256230 [TBL] [Abstract][Full Text] [Related]
15. Propagation of finite amplitude sound through turbulence: modeling with geometrical acoustics and the parabolic approximation. Blanc-Benon P; Lipkens B; Dallois L; Hamilton MF; Blackstock DT J Acoust Soc Am; 2002 Jan; 111(1 Pt 2):487-98. PubMed ID: 11837954 [TBL] [Abstract][Full Text] [Related]
16. A heterogeneous nonlinear attenuating full-wave model of ultrasound. Pinton GF; Dahl J; Rosenzweig S; Trahey GE IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Mar; 56(3):474-88. PubMed ID: 19411208 [TBL] [Abstract][Full Text] [Related]
17. A three-dimensional parabolic equation model of sound propagation using higher-order operator splitting and Padé approximants. Lin YT; Collis JM; Duda TF J Acoust Soc Am; 2012 Nov; 132(5):EL364-70. PubMed ID: 23145696 [TBL] [Abstract][Full Text] [Related]
18. Modeling of an electrohydraulic lithotripter with the KZK equation. Averkiou MA; Cleveland RO J Acoust Soc Am; 1999 Jul; 106(1):102-12. PubMed ID: 10420620 [TBL] [Abstract][Full Text] [Related]