These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 10829679)

  • 41. Acoustical tweezers using single spherically focused piston, X-cut, and Gaussian beams.
    Mitri FG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Oct; 62(10):1835-44. PubMed ID: 26470046
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Low sidelobe limited diffraction beams in the nonlinear regime.
    Holm S; Prieur F
    J Acoust Soc Am; 2010 Sep; 128(3):1015-20. PubMed ID: 20815438
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Finite difference modelling of the temperature rise in non-linear medical ultrasound fields.
    Divall SA; Humphrey VF
    Ultrasonics; 2000 Mar; 38(1-8):273-7. PubMed ID: 10829673
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nonlinear acoustics in diagnostic ultrasound.
    Duck FA
    Ultrasound Med Biol; 2002 Jan; 28(1):1-18. PubMed ID: 11879947
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Finite-difference time-domain synthesis of infrasound propagation through an absorbing atmosphere.
    de Groot-Hedlin C
    J Acoust Soc Am; 2008 Sep; 124(3):1430-41. PubMed ID: 19045635
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nonlinear synthesis of infrasound propagation through an inhomogeneous, absorbing atmosphere.
    de Groot-Hedlin CD
    J Acoust Soc Am; 2012 Aug; 132(2):646-56. PubMed ID: 22894187
    [TBL] [Abstract][Full Text] [Related]  

  • 47. New approaches to nonlinear diffractive field propagation.
    Christopher PT; Parker KJ
    J Acoust Soc Am; 1991 Jul; 90(1):488-99. PubMed ID: 1880298
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A study of infrasound propagation based on high-order finite difference solutions of the Navier-Stokes equations.
    Marsden O; Bogey C; Bailly C
    J Acoust Soc Am; 2014 Mar; 135(3):1083-95. PubMed ID: 24606252
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparison of two theoretical models for predicting non-linear propagation in medical ultrasound fields.
    Bacon DR; Baker AC
    Phys Med Biol; 1989 Nov; 34(11):1633-43. PubMed ID: 2685835
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Finite amplitude measurements of the nonlinear parameter B/A for liquid mixtures spanning a range relevant to tissue harmonic mode.
    Wallace KD; Lloyd CW; Holland MR; Miller JG
    Ultrasound Med Biol; 2007 Apr; 33(4):620-9. PubMed ID: 17343980
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Finite amplitude distortion of the pulsed fields used in diagnostic ultrasound.
    Bacon DR
    Ultrasound Med Biol; 1984; 10(2):189-95. PubMed ID: 6390897
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Theoretical calculation and experimental study on the third-order nonlinearity parameter C/A for organic liquids and biological fluids.
    Xu XC; Mao F; Gong XF; Zhang D
    J Acoust Soc Am; 2003 Mar; 113(3):1743-8. PubMed ID: 12656406
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Unified modeling of turbulence effects on sound propagation.
    Cheinet S; Ehrhardt L; Juvé D; Blanc-Benon P
    J Acoust Soc Am; 2012 Oct; 132(4):2198-209. PubMed ID: 23039416
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nonlinear waves and shocks in a rigid acoustical guide.
    Fernando R; Druon Y; Coulouvrat F; Marchiano R
    J Acoust Soc Am; 2011 Feb; 129(2):604-15. PubMed ID: 21361419
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nonlinear acoustic wave equations with fractional loss operators.
    Prieur F; Holm S
    J Acoust Soc Am; 2011 Sep; 130(3):1125-32. PubMed ID: 21895055
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Numerical Modeling of Ultrasound Propagation in Weakly Heterogeneous Media Using a Mixed-Domain Method.
    Gu J; Jing Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jul; 65(7):1258-1267. PubMed ID: 29993378
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Discrete vortex model of a Helmholtz resonator subjected to high-intensity sound and grazing flow.
    Dai X; Jing X; Sun X
    J Acoust Soc Am; 2012 Nov; 132(5):2988-96. PubMed ID: 23145586
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nonlinear propagation of spark-generated N-waves in air: modeling and measurements using acoustical and optical methods.
    Yuldashev P; Ollivier S; Averiyanov M; Sapozhnikov O; Khokhlova V; Blanc-Benon P
    J Acoust Soc Am; 2010 Dec; 128(6):3321-33. PubMed ID: 21218866
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Time domain simulation of harmonic ultrasound images and beam patterns in 3D using the k-space pseudospectral method.
    Treeby BE; Tumen M; Cox BT
    Med Image Comput Comput Assist Interv; 2011; 14(Pt 1):363-70. PubMed ID: 22003638
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Characteristics of surface sound pressure and absorption of a finite impedance strip for a grazing incident plane wave.
    Sum KS; Pan J
    J Acoust Soc Am; 2007 Jul; 122(1):333-44. PubMed ID: 17614493
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.