These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 10829690)

  • 1. Speckle tracking for multi-dimensional flow estimation.
    Bohs LN; Geiman BJ; Anderson ME; Gebhart SC; Trahey GE
    Ultrasonics; 2000 Mar; 38(1-8):369-75. PubMed ID: 10829690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-dimensional blood flow velocity estimation using ultrasound speckle pattern dependence on scan direction and A-line acquisition velocity.
    Xu T; Bashford G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 May; 60(5):898-908. PubMed ID: 23661124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of ultrasound correlation-based flow velocity mapping and edge velocity gradient measurement.
    Park DW; Kruger GH; Rubin JM; Hamilton J; Gottschalk P; Dodde RE; Shih AJ; Weitzel WF
    J Ultrasound Med; 2013 Oct; 32(10):1815-30. PubMed ID: 24065263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clutter filtering influence on blood velocity estimation using speckle tracking.
    Fadnes S; Bjærum S; Torp H; Lovstakken L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Dec; 62(12):2079-91. PubMed ID: 26670849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Algorithms for estimating blood velocities using ultrasound.
    Jensen JA
    Ultrasonics; 2000 Mar; 38(1-8):358-62. PubMed ID: 10829688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust angle-independent blood velocity estimation based on dual-angle plane wave imaging.
    Fadnes S; Ekroll IK; Nyrnes SA; Torp H; Lovstakken L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Oct; 62(10):1757-67. PubMed ID: 26470038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-dimensional blood velocity estimation with ultrasound: speckle tracking versus crossed-beam vector Doppler based on flow simulations in a carotid bifurcation model.
    Swillens A; Segers P; Torp H; Løvstakken L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):327-39. PubMed ID: 20178899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shunt flow evaluation in congenital heart disease based on two-dimensional speckle tracking.
    Fadnes S; Nyrnes SA; Torp H; Lovstakken L
    Ultrasound Med Biol; 2014 Oct; 40(10):2379-91. PubMed ID: 25023104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental velocity profiles and volumetric flow via two-dimensional speckle tracking.
    Bohs LN; Friemel BH; Trahey GE
    Ultrasound Med Biol; 1995; 21(7):885-98. PubMed ID: 7491744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ensemble tracking for 2D vector velocity measurement: Experimental and initial clinical results.
    Bohs LN; Geiman BJ; Anderson ME; Breit SM; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(4):912-24. PubMed ID: 18244246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative investigation of in vitro flow using three-dimensional colour Doppler ultrasound.
    Guo Z; Moreau M; Rickey DW; Picot PA; Fenster A
    Ultrasound Med Biol; 1995; 21(6):807-16. PubMed ID: 8571468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining Automatic Angle Correction and 3-D Tracking Doppler for the Assessment of Aortic Stenosis Severity.
    Fiorentini S; Espeland T; Berg EAR; Aakhus S; Torp H; Avdal J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Sep; 66(9):1404-1412. PubMed ID: 31180850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of transverse oscillation method.
    Udesen J; Jensen JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 May; 53(5):959-71. PubMed ID: 16764450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding the Influence of Flow Velocity, Wall Motion Filter, Pulse Repetition Frequency, and Aliasing on Power Doppler Image Quantification.
    Martins MR; Martins WP; Soares CAM; Miyague AH; Kudla MJ; Pavan TZ
    J Ultrasound Med; 2018 Jan; 37(1):255-261. PubMed ID: 28736982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid volume flow rate estimation using transverse colour Doppler imaging.
    Picot PA; Fruitman M; Rankin RN; Fenster A
    Ultrasound Med Biol; 1995; 21(9):1199-209. PubMed ID: 8849834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Angle matching in intravascular elastography.
    Janssen CR; de Korte CL; van der Heiden MS; Wapenaar CP; van der Steen AF
    Ultrasonics; 2000 Mar; 38(1-8):417-23. PubMed ID: 10829699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Comparison Between Compounding Techniques Using Large Beam-Steered Plane Wave Imaging for Blood Vector Velocity Imaging in a Carotid Artery Model.
    Saris AE; Hansen HH; Fekkes S; Nillesen MM; Rutten MC; de Korte CL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Nov; 63(11):1758-1771. PubMed ID: 27824559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic vessel tracking and measurement for Doppler studies.
    Wilson LS; Dadd MJ; Gill RW
    Ultrasound Med Biol; 1990; 16(7):645-52. PubMed ID: 2281553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 2-D motion estimation using two parallel receive beams.
    Bohs LN; Gebhart SC; Anderson ME; Geiman BJ; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Mar; 48(2):392-408. PubMed ID: 11370353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Demonstration of three-dimensional vector flow estimation using bandwidth and two transducers on a flow phantom.
    McArdle A; Newhouse VL; Beach KW
    Ultrasound Med Biol; 1995; 21(5):679-92. PubMed ID: 8525558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.